BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20171288)

  • 1. Lapsing when sleep deprived: neural activation characteristics of resistant and vulnerable individuals.
    Chee MW; Tan JC
    Neuroimage; 2010 Jun; 51(2):835-43. PubMed ID: 20171288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced visual processing capacity in sleep deprived persons.
    Kong D; Soon CS; Chee MW
    Neuroimage; 2011 Mar; 55(2):629-34. PubMed ID: 21195190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep deprivation and its effects on object-selective attention.
    Chee MW; Tan JC; Parimal S; Zagorodnov V
    Neuroimage; 2010 Jan; 49(2):1903-10. PubMed ID: 19761853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: Correlations of fronto-parietal activation with performance.
    Chee MW; Chuah LY; Venkatraman V; Chan WY; Philip P; Dinges DF
    Neuroimage; 2006 May; 31(1):419-28. PubMed ID: 16427321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-on-task and sleep deprivation effects are evidenced in overlapping brain areas.
    Asplund CL; Chee MW
    Neuroimage; 2013 Nov; 82():326-35. PubMed ID: 23747456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attending to multiple visual streams: interactions between location-based and category-based attentional selection.
    Fagioli S; Macaluso E
    J Cogn Neurosci; 2009 Aug; 21(8):1628-41. PubMed ID: 18823252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lapsing during sleep deprivation is associated with distributed changes in brain activation.
    Chee MW; Tan JC; Zheng H; Parimal S; Weissman DH; Zagorodnov V; Dinges DF
    J Neurosci; 2008 May; 28(21):5519-28. PubMed ID: 18495886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.
    Liu X; Banich MT; Jacobson BL; Tanabe JL
    Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of early and late night partial sleep deprivation on automatic and selective attention: An ERP study.
    Zerouali Y; Jemel B; Godbout R
    Brain Res; 2010 Jan; 1308():87-99. PubMed ID: 19799884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sleep deprivation on BOLD activity elicited by a divided attention task.
    Jackson ML; Hughes ME; Croft RJ; Howard ME; Crewther D; Kennedy GA; Owens K; Pierce RJ; O'Donoghue FJ; Johnston P
    Brain Imaging Behav; 2011 Jun; 5(2):97-108. PubMed ID: 21271311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectivity and signal intensity in the parieto-occipital cortex predicts top-down attentional effect in visual masking: an fMRI study based on individual differences.
    Tsubomi H; Ikeda T; Hanakawa T; Hirose N; Fukuyama H; Osaka N
    Neuroimage; 2009 Apr; 45(2):587-97. PubMed ID: 19103296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional anatomy of inspection time: an event-related fMRI study.
    Deary IJ; Simonotto E; Meyer M; Marshall A; Marshall I; Goddard N; Wardlaw JM
    Neuroimage; 2004 Aug; 22(4):1466-79. PubMed ID: 15275904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural bases of momentary lapses in attention.
    Weissman DH; Roberts KC; Visscher KM; Woldorff MG
    Nat Neurosci; 2006 Jul; 9(7):971-8. PubMed ID: 16767087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of age and sex on developmental neural networks of visual-spatial attention allocation.
    Rubia K; Hyde Z; Halari R; Giampietro V; Smith A
    Neuroimage; 2010 Jun; 51(2):817-27. PubMed ID: 20188841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of sleep deprivation and task difficulty on networks of fMRI brain response.
    Stricker JL; Brown GG; Wetherell LA; Drummond SP
    J Int Neuropsychol Soc; 2006 Sep; 12(5):591-7. PubMed ID: 16961940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct neural correlates of time-on-task and transient errors during a visuomotor tracking task after sleep restriction.
    Poudel GR; Innes CR; Jones RD
    Neuroimage; 2013 Aug; 77():105-13. PubMed ID: 23558102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.