These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
454 related articles for article (PubMed ID: 20171290)
21. Developmental change in regional brain structure over 7 months in early adolescence: comparison of approaches for longitudinal atlas-based parcellation. Sullivan EV; Pfefferbaum A; Rohlfing T; Baker FC; Padilla ML; Colrain IM Neuroimage; 2011 Jul; 57(1):214-224. PubMed ID: 21511039 [TBL] [Abstract][Full Text] [Related]
22. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. Gousias IS; Rueckert D; Heckemann RA; Dyet LE; Boardman JP; Edwards AD; Hammers A Neuroimage; 2008 Apr; 40(2):672-684. PubMed ID: 18234511 [TBL] [Abstract][Full Text] [Related]
23. Towards a universal MRI atlas of the prostate and prostate zones : Comparison of MRI vendor and image acquisition parameters. Padgett KR; Swallen A; Pirozzi S; Piper J; Chinea FM; Abramowitz MC; Nelson A; Pollack A; Stoyanova R Strahlenther Onkol; 2019 Feb; 195(2):121-130. PubMed ID: 30140944 [TBL] [Abstract][Full Text] [Related]
24. Joint segmentation of image ensembles via latent atlases. Raviv TR; Van Leemput K; Wells WM; Golland P Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):272-80. PubMed ID: 20425997 [TBL] [Abstract][Full Text] [Related]
25. White matter extension of the Melbourne Children's Regional Infant Brain atlas: M-CRIB-WM. Alexander B; Yang JY; Yao SHW; Wu MH; Chen J; Kelly CE; Ball G; Matthews LG; Seal ML; Anderson PJ; Doyle LW; Cheong JLY; Spittle AJ; Thompson DK Hum Brain Mapp; 2020 Jun; 41(9):2317-2333. PubMed ID: 32083379 [TBL] [Abstract][Full Text] [Related]
26. Detail-preserving construction of neonatal brain atlases in space-frequency domain. Zhang Y; Shi F; Yap PT; Shen D Hum Brain Mapp; 2016 Jun; 37(6):2133-50. PubMed ID: 26987787 [TBL] [Abstract][Full Text] [Related]
27. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping. Zhang Y; Wei H; Cronin MJ; He N; Yan F; Liu C Neuroimage; 2018 May; 171():176-189. PubMed ID: 29325780 [TBL] [Abstract][Full Text] [Related]
28. GAS: A genetic atlas selection strategy in multi-atlas segmentation framework. Antonelli M; Cardoso MJ; Johnston EW; Appayya MB; Presles B; Modat M; Punwani S; Ourselin S Med Image Anal; 2019 Feb; 52():97-108. PubMed ID: 30476698 [TBL] [Abstract][Full Text] [Related]
29. Stereotaxic Magnetic Resonance Imaging Brain Atlases for Infants from 3 to 12 Months. Fillmore PT; Richards JE; Phillips-Meek MC; Cryer A; Stevens M Dev Neurosci; 2015; 37(6):515-32. PubMed ID: 26440296 [TBL] [Abstract][Full Text] [Related]
30. Unbiased diffeomorphic atlas construction for computational anatomy. Joshi S; Davis B; Jomier M; Gerig G Neuroimage; 2004; 23 Suppl 1():S151-60. PubMed ID: 15501084 [TBL] [Abstract][Full Text] [Related]
31. Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation. Hao Y; Wang T; Zhang X; Duan Y; Yu C; Jiang T; Fan Y; Hum Brain Mapp; 2014 Jun; 35(6):2674-97. PubMed ID: 24151008 [TBL] [Abstract][Full Text] [Related]
32. A novel hybrid atlas-free hierarchical graph-based segmentation of newborn brain MRI using wavelet filter banks. Jaware T; Khanchandani K; Badgujar R Int J Neurosci; 2020 May; 130(5):499-514. PubMed ID: 31790318 [No Abstract] [Full Text] [Related]
33. Multi-atlas active contour segmentation method using template optimization algorithm. Wang M; Li P; Liu F BMC Med Imaging; 2019 May; 19(1):42. PubMed ID: 31126254 [TBL] [Abstract][Full Text] [Related]
34. A generative probability model of joint label fusion for multi-atlas based brain segmentation. Wu G; Wang Q; Zhang D; Nie F; Huang H; Shen D Med Image Anal; 2014 Aug; 18(6):881-90. PubMed ID: 24315359 [TBL] [Abstract][Full Text] [Related]
35. A review of atlas-based segmentation for magnetic resonance brain images. Cabezas M; Oliver A; Lladó X; Freixenet J; Cuadra MB Comput Methods Programs Biomed; 2011 Dec; 104(3):e158-77. PubMed ID: 21871688 [TBL] [Abstract][Full Text] [Related]
36. Supervoxel based method for multi-atlas segmentation of brain MR images. Huo J; Wu J; Cao J; Wang G Neuroimage; 2018 Jul; 175():201-214. PubMed ID: 29625235 [TBL] [Abstract][Full Text] [Related]
37. Reliability-based robust multi-atlas label fusion for brain MRI segmentation. Sun L; Zu C; Shao W; Guang J; Zhang D; Liu M Artif Intell Med; 2019 May; 96():12-24. PubMed ID: 31164205 [TBL] [Abstract][Full Text] [Related]
38. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. Wang L; Gao Y; Shi F; Li G; Gilmore JH; Lin W; Shen D Neuroimage; 2015 Mar; 108():160-72. PubMed ID: 25541188 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Rohlfing T; Brandt R; Menzel R; Maurer CR Neuroimage; 2004 Apr; 21(4):1428-42. PubMed ID: 15050568 [TBL] [Abstract][Full Text] [Related]
40. Segmentation of image ensembles via latent atlases. Riklin-Raviv T; Van Leemput K; Menze BH; Wells WM; Golland P Med Image Anal; 2010 Oct; 14(5):654-65. PubMed ID: 20580305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]