These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 20171638)
1. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. Kao PC; Lewis CL; Ferris DP J Biomech; 2010 May; 43(7):1401-7. PubMed ID: 20171638 [TBL] [Abstract][Full Text] [Related]
2. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. Kao PC; Lewis CL; Ferris DP J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331 [TBL] [Abstract][Full Text] [Related]
3. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
4. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Kao PC; Lewis CL; Ferris DP J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952 [TBL] [Abstract][Full Text] [Related]
5. Effects of ankle exoskeleton assistance and plantar pressure biofeedback on incline walking mechanics and muscle activity in cerebral palsy. Fang Y; Lerner ZF J Biomech; 2024 Jan; 163():111944. PubMed ID: 38219555 [TBL] [Abstract][Full Text] [Related]
6. Learning to walk with a robotic ankle exoskeleton. Gordon KE; Ferris DP J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829 [TBL] [Abstract][Full Text] [Related]
7. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns]. Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968 [TBL] [Abstract][Full Text] [Related]
8. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns. Gregor RJ; Smith DW; Prilutsky BI J Neurophysiol; 2006 Mar; 95(3):1397-409. PubMed ID: 16207777 [TBL] [Abstract][Full Text] [Related]
9. Soleus stretch reflex modulation during gait in humans. Sinkjaer T; Andersen JB; Larsen B J Neurophysiol; 1996 Aug; 76(2):1112-20. PubMed ID: 8871224 [TBL] [Abstract][Full Text] [Related]
10. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping. Farris DJ; Hicks JL; Delp SL; Sawicki GS J Exp Biol; 2014 Nov; 217(Pt 22):4018-28. PubMed ID: 25278469 [TBL] [Abstract][Full Text] [Related]
11. Interindividual differences in H reflex modulation during normal walking. Simonsen EB; Dyhre-Poulsen P; Alkjaer T; Aagaard P; Magnusson SP Exp Brain Res; 2002 Jan; 142(1):108-15. PubMed ID: 11797088 [TBL] [Abstract][Full Text] [Related]
12. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
13. On the reflex coactivation of ankle flexor and extensor muscles induced by a sudden drop of support surface during walking in humans. Nakazawa K; Kawashima N; Akai M; Yano H J Appl Physiol (1985); 2004 Feb; 96(2):604-11. PubMed ID: 14527965 [TBL] [Abstract][Full Text] [Related]
14. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
15. Feedforward neural control of toe walking in humans. Lorentzen J; Willerslev-Olsen M; Hüche Larsen H; Svane C; Forman C; Frisk R; Farmer SF; Kersting U; Nielsen JB J Physiol; 2018 Jun; 596(11):2159-2172. PubMed ID: 29572934 [TBL] [Abstract][Full Text] [Related]
16. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton. Gordon KE; Kinnaird CR; Ferris DP J Neurophysiol; 2013 Apr; 109(7):1804-14. PubMed ID: 23307949 [TBL] [Abstract][Full Text] [Related]
17. The relationship between ankle plantar flexor muscle moments and knee compressive forces in subjects with and without pain. Robon MJ; Perell KL; Fang M; Guererro E Clin Biomech (Bristol); 2000 Aug; 15(7):522-7. PubMed ID: 10831812 [TBL] [Abstract][Full Text] [Related]
18. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking. Jackson RW; Dembia CL; Delp SL; Collins SH J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663 [TBL] [Abstract][Full Text] [Related]
19. Mechanical and neural stretch responses of the human soleus muscle at different walking speeds. Cronin NJ; Ishikawa M; Grey MJ; af Klint R; Komi PV; Avela J; Sinkjaer T; Voigt M J Physiol; 2009 Jul; 587(Pt 13):3375-82. PubMed ID: 19451207 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures. Matjacić Z; Olensek A; Bajd T J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]