BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20171968)

  • 41. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates.
    Berger C; Jensen MC; Lansdorp PM; Gough M; Elliott C; Riddell SR
    J Clin Invest; 2008 Jan; 118(1):294-305. PubMed ID: 18060041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adoptive Transfer of CD8+ T Cells Generated from Induced Pluripotent Stem Cells Triggers Regressions of Large Tumors Along with Immunological Memory.
    Saito H; Okita K; Chang AE; Ito F
    Cancer Res; 2016 Jun; 76(12):3473-83. PubMed ID: 27197199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defining novel parameters for the optimal priming and expansion of minor histocompatibility antigen-specific T cells in culture.
    Janelle V; Carli C; Taillefer J; Orio J; Delisle JS
    J Transl Med; 2015 Apr; 13():123. PubMed ID: 25925868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antigen-specific culture of memory-like CD8 T cells for adoptive immunotherapy.
    Litterman AJ; Zellmer DM; LaRue RS; Jameson SC; Largaespada DA
    Cancer Immunol Res; 2014 Sep; 2(9):839-45. PubMed ID: 24852944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists.
    Petersen CT; Hassan M; Morris AB; Jeffery J; Lee K; Jagirdar N; Staton AD; Raikar SS; Spencer HT; Sulchek T; Flowers CR; Waller EK
    Blood Adv; 2018 Feb; 2(3):210-223. PubMed ID: 29386194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular mechanisms underlying the modulation of T-cell proliferation and cytotoxicity by immobilized CCL21 and ICAM1.
    Yado S; Dassa B; Zoabi R; Reich-Zeliger S; Friedman N; Geiger B
    J Immunother Cancer; 2024 Jun; 12(6):. PubMed ID: 38866588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.
    Kaartinen T; Luostarinen A; Maliniemi P; Keto J; Arvas M; Belt H; Koponen J; Mäkinen PI; Loskog A; Mustjoki S; Porkka K; Ylä-Herttuala S; Korhonen M
    Cytotherapy; 2017 Jun; 19(6):689-702. PubMed ID: 28411126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement.
    Smith C; Økern G; Rehan S; Beagley L; Lee SK; Aarvak T; Schjetne KW; Khanna R
    Clin Transl Immunology; 2015 Jan; 4(1):e31. PubMed ID: 25671129
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of memory T cells for adoptive transfer using clinical-grade anti-CD62L magnetic beads.
    Verfuerth S; Sousa PS; Beloki L; Murray M; Peters MD; O'Neill AT; Mackinnon S; Lowdell MW; Chakraverty R; Samuel ER
    Bone Marrow Transplant; 2015 Oct; 50(10):1358-64. PubMed ID: 26076125
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generating stem-like memory T cells with antioxidants for adoptive cell transfer immunotherapy of cancer.
    Pilipow K; Scamardella E; Lugli E
    Methods Enzymol; 2020; 631():137-158. PubMed ID: 31948545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In Vitro Conversion of Activated T Cells into Stem Cell Memory-Like T Cells.
    Kondo T; Imura Y; Ando M; Chikuma S; Yoshimura A
    Methods Mol Biol; 2019; 2048():41-51. PubMed ID: 31396927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Induction/engineering, detection, selection, and expansion of clinical-grade human antigen-specific CD8 cytotoxic T cell clones for adoptive immunotherapy.
    Jeras M; Bricl I; Zorec R; Svajger U
    J Biomed Biotechnol; 2010; 2010():705215. PubMed ID: 20224660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A non-human primate model for analysis of safety, persistence, and function of adoptively transferred T cells.
    Berger C; Berger M; Anderson D; Riddell SR
    J Med Primatol; 2011 Apr; 40(2):88-103. PubMed ID: 21044089
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large-scale expansion and characterization of CD3
    Coeshott C; Vang B; Jones M; Nankervis B
    J Transl Med; 2019 Aug; 17(1):258. PubMed ID: 31391068
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The impact of ex vivo clinical grade activation protocols on human T-cell phenotype and function for the generation of genetically modified cells for adoptive cell transfer therapy.
    Tumeh PC; Koya RC; Chodon T; Graham NA; Graeber TG; Comin-Anduix B; Ribas A
    J Immunother; 2010 Oct; 33(8):759-68. PubMed ID: 20842061
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    Mousset CM; Hobo W; Ji Y; Fredrix H; De Giorgi V; Allison RD; Kester MGD; Falkenburg JHF; Schaap NPM; Jansen JH; Gattinoni L; Dolstra H; van der Waart AB
    Oncoimmunology; 2018; 7(10):e1488565. PubMed ID: 30288356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of various culture conditions on ex vivo expansion of polyclonal T cells for adoptive immunotherapy.
    Ghaffari S; Torabi-Rahvar M; Omidkhoda A; Ahmadbeigi N
    APMIS; 2019 Dec; 127(12):737-745. PubMed ID: 31273832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy?
    Klebanoff CA; Gattinoni L; Restifo NP
    J Immunother; 2012; 35(9):651-60. PubMed ID: 23090074
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of various medium environment to in vitro human T cell culture.
    Xu H; Wang N; Cao W; Huang L; Zhou J; Sheng L
    In Vitro Cell Dev Biol Anim; 2018 Sep; 54(8):559-566. PubMed ID: 30003447
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of Culture Media for
    Rahimmanesh I; Tavangar M; Zahedi SN; Azizi Y; Khanahmad Shahreza H
    Adv Biomed Res; 2022; 11():94. PubMed ID: 36518860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.