These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20171978)

  • 1. Estimating the time-to-passage of visual self-motion: Is the second order motion information processed?
    Capelli A; Berthoz A; Vidal M
    Vision Res; 2010 Apr; 50(9):914-23. PubMed ID: 20171978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-to-contact estimation of accelerated stimuli is based on first-order information.
    Benguigui N; Ripoll H; Broderick MP
    J Exp Psychol Hum Percept Perform; 2003 Dec; 29(6):1083-101. PubMed ID: 14640832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing acceleration and speed tuning in macaque MT: physiology and modeling.
    Price NS; Ono S; Mustari MJ; Ibbotson MR
    J Neurophysiol; 2005 Nov; 94(5):3451-64. PubMed ID: 16079192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of linear ego-acceleration from optic flow.
    Festl F; Recktenwald F; Yuan C; Mallot HA
    J Vis; 2012 Jul; 12(7):. PubMed ID: 22822090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The detection of moving objects by moving observers.
    Royden CS; Connors EM
    Vision Res; 2010 Jun; 50(11):1014-24. PubMed ID: 20304002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do common systems control eye movements and motion extrapolation?
    Makin AD; Poliakoff E
    Q J Exp Psychol (Hove); 2011 Jul; 64(7):1327-43. PubMed ID: 21480079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task dependent processing of visual information about target acceleration.
    Dubrowski A; Carnahan H
    Brain Cogn; 2000; 43(1-3):172-7. PubMed ID: 10857688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal-range estimation of multiple objects: evidence for an early bottleneck.
    Baurès R; Oberfeld D; Hecht H
    Acta Psychol (Amst); 2011 May; 137(1):76-82. PubMed ID: 21440884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.
    Maffei V; Macaluso E; Indovina I; Orban G; Lacquaniti F
    J Neurophysiol; 2010 Jan; 103(1):360-70. PubMed ID: 19889846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroimaging of direction-selective mechanisms for second-order motion.
    Nishida S; Sasaki Y; Murakami I; Watanabe T; Tootell RB
    J Neurophysiol; 2003 Nov; 90(5):3242-54. PubMed ID: 12917391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extrapolation of horizontal motion to linear targets of different orientation.
    Yakimoff N
    Acta Physiol Pharmacol Bulg; 1985; 11(3):31-6. PubMed ID: 3832792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of first-order motion in marmoset visual cortex is influenced by second-order motion.
    Barraclough N; Tinsley C; Webb B; Vincent C; Derrington A
    Vis Neurosci; 2006; 23(5):815-24. PubMed ID: 17020636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast and assimilation in motion perception and smooth pursuit eye movements.
    Spering M; Gegenfurtner KR
    J Neurophysiol; 2007 Sep; 98(3):1355-63. PubMed ID: 17634337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifactorial interactions involved in linear self-transport distance estimate: a place for time.
    Israël I; Capelli A; Sablé D; Laurent C; Lecoq C; Bredin J
    Int J Psychophysiol; 2004 Jun; 53(1):21-8. PubMed ID: 15172132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconfounding the direction of motion in depth, time to passage and rotation rate of an approaching object.
    Gray R; Regan DM
    Vision Res; 2006 Jul; 46(15):2388-402. PubMed ID: 16542703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The directions of nystagmus and apparent self-motion evoked by caloric tests and angular accelerations.
    Kolev OI
    J Vestib Res; 2001-2002; 11(6):349-55. PubMed ID: 12446960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues.
    Senot P; Zago M; Lacquaniti F; McIntyre J
    J Neurophysiol; 2005 Dec; 94(6):4471-80. PubMed ID: 16120661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.
    Indovina I; Maffei V; Lacquaniti F
    Exp Brain Res; 2013 Sep; 229(4):579-86. PubMed ID: 23807477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of everyday objects on the basis of kinetic contours.
    Segaert K; Nygård GE; Wagemans J
    Vision Res; 2009 Feb; 49(4):417-28. PubMed ID: 19124037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.