BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20172488)

  • 1. Nucleosomal context of binding sites influences transcription factor binding affinity and gene regulation.
    Dai Z; Dai X; Xiang Q; Feng J
    Genomics Proteomics Bioinformatics; 2009 Dec; 7(4):155-62. PubMed ID: 20172488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosome organization in the vicinity of transcription factor binding sites in the human genome.
    Nie Y; Cheng X; Chen J; Sun X
    BMC Genomics; 2014 Jun; 15(1):493. PubMed ID: 24942981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into distinct regulatory modes of nucleosome positioning.
    Dai Z; Dai X; Xiang Q; Feng J; Deng Y; Wang J
    BMC Genomics; 2009 Dec; 10():602. PubMed ID: 20003404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustered regulatory elements at nucleosome-depleted regions punctuate a constant nucleosomal landscape in Schizosaccharomyces pombe.
    Soriano I; Quintales L; Antequera F
    BMC Genomics; 2013 Nov; 14(1):813. PubMed ID: 24256300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of chromatin regulators and transcription factors on gene regulation: a nucleosomal perspective.
    Dong D; Shao X; Zhang Z
    Bioinformatics; 2011 Jan; 27(2):147-52. PubMed ID: 21075748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays.
    Levo M; Avnit-Sagi T; Lotan-Pompan M; Kalma Y; Weinberger A; Yakhini Z; Segal E
    Mol Cell; 2017 Feb; 65(4):604-617.e6. PubMed ID: 28212748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.
    Wu X; Liu H; Liu H; Su J; Lv J; Cui Y; Wang F; Zhang Y
    Gene; 2013 Nov; 530(1):8-18. PubMed ID: 23958656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of association between nucleosome occupancy and the evolution of transcription factor binding sites in yeast.
    Swamy KB; Chu WY; Wang CY; Tsai HK; Wang D
    BMC Evol Biol; 2011 May; 11():150. PubMed ID: 21627806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global nucleosome occupancy in yeast.
    Bernstein BE; Liu CL; Humphrey EL; Perlstein EO; Schreiber SL
    Genome Biol; 2004; 5(9):R62. PubMed ID: 15345046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonspecific transcription-factor-DNA binding influences nucleosome occupancy in yeast.
    Afek A; Sela I; Musa-Lempel N; Lukatsky DB
    Biophys J; 2011 Nov; 101(10):2465-75. PubMed ID: 22098745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene.
    Lascaris RF; Groot E; Hoen PB; Mager WH; Planta RJ
    Nucleic Acids Res; 2000 Mar; 28(6):1390-6. PubMed ID: 10684934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YPA: an integrated repository of promoter features in Saccharomyces cerevisiae.
    Chang DT; Huang CY; Wu CY; Wu WS
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D647-52. PubMed ID: 21045055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of transcription factor binding sites and their characteristic DNA structures.
    Dai Z; Guo D; Dai X; Xiong Y
    BMC Genomics; 2015; 16 Suppl 3(Suppl 3):S8. PubMed ID: 25708259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of nucleosome positioning based on transcription factor binding sites.
    Yi X; Cai YD; He Z; Cui W; Kong X
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20824131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.
    Zawadzki KA; Morozov AV; Broach JR
    Mol Biol Cell; 2009 Aug; 20(15):3503-13. PubMed ID: 19494041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the association between transcription factor binding site variants and distinct accompanying regulatory motifs in yeast.
    Chiang S; Swamy KB; Hsu TW; Tsai ZT; Lu HH; Wang D; Tsai HK
    Gene; 2012 Jan; 491(2):237-45. PubMed ID: 21963994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors.
    Donovan BT; Chen H; Jipa C; Bai L; Poirier MG
    Elife; 2019 Mar; 8():. PubMed ID: 30888317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome.
    Albert I; Mavrich TN; Tomsho LP; Qi J; Zanton SJ; Schuster SC; Pugh BF
    Nature; 2007 Mar; 446(7135):572-6. PubMed ID: 17392789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic changes in nucleosome occupancy are not predictive of gene expression dynamics but are linked to transcription and chromatin regulators.
    Huebert DJ; Kuan PF; Keleş S; Gasch AP
    Mol Cell Biol; 2012 May; 32(9):1645-53. PubMed ID: 22354995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.