BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 20172574)

  • 1. Episomal replication timing of gamma-herpesviruses in latently infected cells.
    Vogel B; Full F; Biesinger B; Linden C; Alberter B; Ensser A
    Virology; 2010 May; 400(2):207-14. PubMed ID: 20172574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Herpesvirus saimiri episomal persistence is maintained via interaction between open reading frame 73 and the cellular chromosome-associated protein MeCP2.
    Griffiths R; Whitehouse A
    J Virol; 2007 Apr; 81(8):4021-32. PubMed ID: 17267510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication.
    Van Scoy S; Watakabe I; Krainer AR; Hearing J
    Virology; 2000 Sep; 275(1):145-57. PubMed ID: 11017796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epstein-Barr virus replicative gene transcription during de novo infection of human thymocytes: simultaneous early expression of BZLF-1 and its repressor RAZ.
    Kelleher CA; Paterson RK; Dreyfus DH; Streib JE; Xu JW; Takase K; Jones JF; Gelfand EW
    Virology; 1995 Apr; 208(2):685-95. PubMed ID: 7747440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent and lytic Epstein-Barr virus replication strategies.
    Tsurumi T; Fujita M; Kudoh A
    Rev Med Virol; 2005; 15(1):3-15. PubMed ID: 15386591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternatively initiated gene 50/RTA transcripts expressed during murine and human gammaherpesvirus reactivation from latency.
    Gray KS; Allen RD; Farrell ML; Forrest JC; Speck SH
    J Virol; 2009 Jan; 83(1):314-28. PubMed ID: 18971285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The insulator protein CTCF binding sites in the orf73/LANA promoter region of herpesvirus saimiri are involved in conferring episomal stability in latently infected human T cells.
    Zielke K; Full F; Teufert N; Schmidt M; Müller-Fleckenstein I; Alberter B; Ensser A
    J Virol; 2012 Feb; 86(3):1862-73. PubMed ID: 22130528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autographa californica nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase.
    Braunagel SC; Parr R; Belyavskyi M; Summers MD
    Virology; 1998 Apr; 244(1):195-211. PubMed ID: 9581791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herpesvirus saimiri.
    Fickenscher H; Fleckenstein B
    Philos Trans R Soc Lond B Biol Sci; 2001 Apr; 356(1408):545-67. PubMed ID: 11313011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.
    Niller HH; Wolf H; Minarovits J
    Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lytic cycle switches of oncogenic human gammaherpesviruses.
    Miller G; El-Guindy A; Countryman J; Ye J; Gradoville L
    Adv Cancer Res; 2007; 97():81-109. PubMed ID: 17419942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-1027-induced alterations in Epstein-Barr viral DNA replication in latently infected cultured human Raji cells: relationship to DNA damage.
    McHugh MM; Beerman TA
    Biochemistry; 1999 May; 38(21):6962-70. PubMed ID: 10346918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo DNA methylation at nonrandom founder sites 5' from an unmethylated minimal origin of DNA replication in latent Epstein-Barr virus genomes.
    Salamon D; Takacs M; Myöhänen S; Marcsek Z; Berencsi G; Minarovits J
    Biol Chem; 2000 Feb; 381(2):95-105. PubMed ID: 10746740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of replication licensing for the dyad symmetry element-dependent replication of the Epstein-Barr virus oriP minichromosome.
    Shirakata M; Imadome KI; Hirai K
    Virology; 1999 Oct; 263(1):42-54. PubMed ID: 10544081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective loss of integrated Epstein-Barr virus genomes after long-term cultivation of Burkitt's lymphoma x B-lymphoblastoid cell hybrids due to chromatin instability at the integration site.
    Wolf J; Jox A; Skarbek H; Pukrop T; Bartnitzke S; Pawlita M; Diehl V; Bullerdiek J
    Virology; 1995 Sep; 212(1):179-85. PubMed ID: 7676627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid origin of replication of Epstein-Barr virus, oriP, does not limit replication in cis.
    Sugden B; Warren N
    Mol Biol Med; 1988 Apr; 5(2):85-94. PubMed ID: 2840551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step multiplex real-time PCR assay to analyse the latency patterns of Epstein-Barr virus infection.
    Kubota N; Wada K; Ito Y; Shimoyama Y; Nakamura S; Nishiyama Y; Kimura H
    J Virol Methods; 2008 Jan; 147(1):26-36. PubMed ID: 17870188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lytic cycle gene regulation of Epstein-Barr virus.
    Amon W; Binné UK; Bryant H; Jenkins PJ; Karstegl CE; Farrell PJ
    J Virol; 2004 Dec; 78(24):13460-9. PubMed ID: 15564457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cells lytically infected with Epstein-Barr virus are detected and separable by immunoglobulins from EBV-seropositive individuals.
    Bhaduri-McIntosh S; Miller G
    J Virol Methods; 2006 Oct; 137(1):103-14. PubMed ID: 16843536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone modification pattern of the T-cellular Herpesvirus saimiri genome in latency.
    Alberter B; Ensser A
    J Virol; 2007 Mar; 81(5):2524-30. PubMed ID: 17151105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.