These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20172784)

  • 41. Nonlinear buckling of blood vessels: a theoretical study.
    Han HC
    J Biomech; 2008 Aug; 41(12):2708-13. PubMed ID: 18653191
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovery of the role of wall shear in atherosclerosis.
    Caro CG
    Arterioscler Thromb Vasc Biol; 2009 Feb; 29(2):158-61. PubMed ID: 19038849
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion.
    Nguyen CM; Levy AJ
    J Biomech; 2010 Oct; 43(14):2702-8. PubMed ID: 20723900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries.
    Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K
    Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis.
    Kumar GV; Mathew L
    Cardiovasc Revasc Med; 2009; 10(4):247-51. PubMed ID: 19815172
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimating the elastic modulus of non-atherosclerotic elastic arteries.
    Dobrin PB; Mrkvicka R
    J Hypertens Suppl; 1992 Aug; 10(6):S7-10. PubMed ID: 1432331
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.
    Hu J; Klinich KD; Miller CS; Nazmi G; Pearlman MD; Schneider LW; Rupp JD
    J Biomech; 2009 Nov; 42(15):2528-34. PubMed ID: 19665131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of viscoelastic wall properties in ovine arteries.
    Valdez-Jasso D; Haider MA; Banks HT; Bia Santana D; Zócalo Germán Y; Armentano RL; Olufsen MS
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):210-9. PubMed ID: 19272946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration.
    Zhao R; Wyss K; Simmons CA
    J Biomech; 2009 Dec; 42(16):2768-73. PubMed ID: 19765713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements.
    Avril S; Badel P; Duprey A
    J Biomech; 2010 Nov; 43(15):2978-85. PubMed ID: 20673669
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multicomponent material property characterization of atherosclerotic human carotid arteries through a Bayesian Optimization based inverse finite element approach.
    Guvenir Torun S; Torun HM; Hansen HHG; de Korte CL; van der Steen AFW; Gijsen FJH; Akyildiz AC
    J Mech Behav Biomed Mater; 2022 Feb; 126():104996. PubMed ID: 34864574
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis.
    Akyildiz AC; Hansen HH; Nieuwstadt HA; Speelman L; De Korte CL; van der Steen AF; Gijsen FJ
    Ann Biomed Eng; 2016 Apr; 44(4):968-79. PubMed ID: 26399991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical properties of model atherosclerotic lesion lipid pools.
    Loree HM; Tobias BJ; Gibson LJ; Kamm RD; Small DM; Lee RT
    Arterioscler Thromb; 1994 Feb; 14(2):230-4. PubMed ID: 8305413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Patient specific characterization of artery and plaque material properties in peripheral artery disease.
    Noble C; Carlson KD; Neumann E; Dragomir-Daescu D; Erdemir A; Lerman A; Young M
    J Mech Behav Biomed Mater; 2020 Jan; 101():103453. PubMed ID: 31585351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in biomechanical properties of the coronary artery wall contribute to maintained contractile responses to endothelin-1 in atherosclerosis.
    Ooi CY; Sutcliffe MP; Davenport AP; Maguire JJ
    Life Sci; 2014 Nov; 118(2):424-9. PubMed ID: 24721512
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vortical flow structure identification and flow transport in arteries.
    Doorly DJ; Sherwin SJ; Franke PT; Peiró J
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):261-73. PubMed ID: 12186718
    [No Abstract]   [Full Text] [Related]  

  • 60. A study on the effects of covered stents on tissue prolapse.
    Weaver JD; Ku DN
    J Biomech Eng; 2012 Feb; 134(2):024505. PubMed ID: 22482680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.