BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 20172839)

  • 1. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A switching regime model for the EMG-based control of a robot arm.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):53-63. PubMed ID: 20403787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic adaptive onset detection using an electromyogram with individual difference for control of a meal assistance robot.
    Zhang X; Wang X; Wang B; Sugi T; Nakamura M
    J Med Eng Technol; 2009; 33(4):322-7. PubMed ID: 19384708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lower-limb power-assist robot with perception-assist.
    Hayashi Y; Kiguchi K
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An upper-limb power-assist robot with tremor suppression control.
    Kiguchi K; Hayashi Y; Asami T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975390. PubMed ID: 22275594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K; Imada Y; Liyanage M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.
    Yin YH; Fan YJ; Xu LD
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):542-9. PubMed ID: 22249763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online electromyographic control of a robotic prosthesis.
    Shenoy P; Miller KJ; Crawford B; Rao RN
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S; Kim J
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm.
    Costa Á; Hortal E; Iáñez E; Azorín JM
    PLoS One; 2014; 9(11):e112352. PubMed ID: 25390372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An intelligent system with EMG-based joint angle estimation for telemanipulation.
    Suryanarayanan S; Reddy NP; Gupta V
    Stud Health Technol Inform; 1996; 29():546-52. PubMed ID: 10163782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
    Kansaku K; Hata N; Takano K
    Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions.
    Farina D; Pozzo M; Merlo E; Bottin A; Merletti R
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1383-93. PubMed ID: 15311823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upper trapezius muscle mechanomyographic and electromyographic activity in humans during low force fatiguing and non-fatiguing contractions.
    Madeleine P; Farina D; Merletti R; Arendt-Nielsen L
    Eur J Appl Physiol; 2002 Aug; 87(4-5):327-36. PubMed ID: 12172870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of anthropomorphic multi-D.O.F. master-slave arm for mutual telexistence.
    Tadakuma R; Asahara Y; Kajimoto H; Kawakami N; Tachi S
    IEEE Trans Vis Comput Graph; 2005; 11(6):626-36. PubMed ID: 16270856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and quantitative performance evaluation of a noninvasive EMG computer interface.
    Choi C; Micera S; Carpaneto J; Kim J
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.