These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20173)

  • 1. Rheology of fibrin clots. IV. Darcy constants and fiber thickness.
    Rosser RW; Roberts WW; Ferry JD
    Biophys Chem; 1977 Sep; 7(2):153-7. PubMed ID: 20173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of fibrin clots. III. Shear creep and creep recovery of fine ligated and coarse unligated closts.
    Nelb GW; Gerth C; Ferry JD
    Biophys Chem; 1976 Sep; 5(3):377-87. PubMed ID: 974229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factor XIII stiffens fibrin clots by causing fiber compaction.
    Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2014 Oct; 12(10):1687-96. PubMed ID: 25142383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology of fibrin clots. II. Linear viscoelastic behavior in shear creep.
    Gerth C; Roberts WW; Ferry JD
    Biophys Chem; 1974 Oct; 2(3):208-17. PubMed ID: 4474029
    [No Abstract]   [Full Text] [Related]  

  • 6. Thromboelastograph assay for measuring the mechanical strength of fibrin sealant clots.
    Glidden PF; Malaska C; Herring SW
    Clin Appl Thromb Hemost; 2000 Oct; 6(4):226-33. PubMed ID: 11030529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology of fibrin clots. I. Dynamic viscoelastic properties and fluid permeation.
    Roberts WW; Kramer O; Rosser RW; Nestler FH; Ferry JD
    Biophys Chem; 1974 Feb; 1(3):152-60. PubMed ID: 4425722
    [No Abstract]   [Full Text] [Related]  

  • 8. Rheological properties of fibrin clots. Effects of fibrinogen concentration, Factor XIII deficiency, and Factor XIII inhibition.
    Glover CJ; McIntire LV; Brown CH; Natelson EA
    J Lab Clin Med; 1975 Oct; 86(4):644-56. PubMed ID: 1176815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural origins of fibrin clot rheology.
    Ryan EA; Mockros LF; Weisel JW; Lorand L
    Biophys J; 1999 Nov; 77(5):2813-26. PubMed ID: 10545379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc promotes clot stability by accelerating clot formation and modifying fibrin structure.
    Henderson SJ; Xia J; Wu H; Stafford AR; Leslie BA; Fredenburgh JC; Weitz DA; Weitz JI
    Thromb Haemost; 2016 Mar; 115(3):533-42. PubMed ID: 26489782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole blood clots are more resistant to lysis than plasma clots--greater efficacy of rivaroxaban.
    Varin R; Mirshahi S; Mirshahi P; Klein C; Jamshedov J; Chidiac J; Perzborn E; Mirshahi M; Soria C; Soria J
    Thromb Res; 2013 Mar; 131(3):e100-9. PubMed ID: 23313382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid phase coagulation events have minimal impact on plasma fibrin structure.
    Carr ME
    Am J Med Sci; 1988 May; 295(5):433-7. PubMed ID: 3376986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the mechanical, kinetic, and biochemical properties of fibrin clots formed with two different fibrin sealants.
    Hickerson WL; Nur I; Meidler R
    Blood Coagul Fibrinolysis; 2011 Jan; 22(1):19-23. PubMed ID: 21150581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of a natural and a synthetic inhibitor of factor XIIIa on fibrin clot rheology.
    Ryan EA; Mockros LF; Stern AM; Lorand L
    Biophys J; 1999 Nov; 77(5):2827-36. PubMed ID: 10545380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of dimethylbiguanide on thrombin activity, FXIII activation, fibrin polymerization, and fibrin clot formation.
    Standeven KF; Ariëns RA; Whitaker P; Ashcroft AE; Weisel JW; Grant PJ
    Diabetes; 2002 Jan; 51(1):189-97. PubMed ID: 11756340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of fibrinogen Bicêtre II: a gamma 308 Asn-->Lys mutation located near the fibrin D:D interaction sites.
    Marchi RC; Carvajal Z; Boyer-Neumann C; Anglés-Cano E; Weisel JW
    Blood Coagul Fibrinolysis; 2006 Apr; 17(3):193-201. PubMed ID: 16575257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained molecular dynamics simulations of fibrin polymerization: effects of thrombin concentration on fibrin clot structure.
    Yesudasan S; Wang X; Averett RD
    J Mol Model; 2018 Apr; 24(5):109. PubMed ID: 29623504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrin gel formation in a shear flow.
    Guy RD; Fogelson AL; Keener JP
    Math Med Biol; 2007 Mar; 24(1):111-30. PubMed ID: 17018571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport physics and biorheology in the setting of hemostasis and thrombosis.
    Brass LF; Diamond SL
    J Thromb Haemost; 2016 May; 14(5):906-17. PubMed ID: 26848552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopy of fine fibrin clots and fine and coarse fibrin films. Observations of fibers in cross-section and in deformed states.
    Müller MF; Ris H; Ferry JD
    J Mol Biol; 1984 Apr; 174(2):369-84. PubMed ID: 6716483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.