BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20173071)

  • 1. Impact of endochitinase-transformed white spruce on soil fungal biomass and ectendomycorrhizal symbiosis.
    Stefani FO; Tanguay P; Pelletier G; Piché Y; Hamelin RC
    Appl Environ Microbiol; 2010 Apr; 76(8):2607-14. PubMed ID: 20173071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions.
    Lamarche J; Stefani FO; Séguin A; Hamelin RC
    FEMS Microbiol Ecol; 2011 May; 76(2):199-208. PubMed ID: 21223334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce.
    Velmala SM; Rajala T; Haapanen M; Taylor AF; Pennanen T
    Mycorrhiza; 2013 Jan; 23(1):21-33. PubMed ID: 22644394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term effect of apatite on ectomycorrhizal growth and community structure.
    Berner C; Johansson T; Wallander H
    Mycorrhiza; 2012 Nov; 22(8):615-21. PubMed ID: 22451218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers.
    Reininger V; Sieber TN
    PLoS One; 2012; 7(8):e42865. PubMed ID: 22900058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior alaska and correlation of different fungi with host growth responses.
    Bent E; Kiekel P; Brenton R; Taylor DL
    Appl Environ Microbiol; 2011 May; 77(10):3351-9. PubMed ID: 21441343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic diversity of naturally established ectomycorrhizal fungi on Norway spruce seedlings under nursery conditions.
    Trocha LK; Rudawska M; Leski T; Dabert M
    Microb Ecol; 2006 Oct; 52(3):418-25. PubMed ID: 16826321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigation of antagonistic effects on plant growth due to root co-colonization by dark septate endophytes and ectomycorrhiza.
    Reininger V; Sieber TN
    Environ Microbiol Rep; 2013 Dec; 5(6):892-8. PubMed ID: 24249297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of an 8-year-old transgenic poplar plantation on the ectomycorrhizal fungal community.
    Stefani FO; Moncalvo JM; Séguin A; Bérubé JA; Hamelin RC
    Appl Environ Microbiol; 2009 Dec; 75(23):7527-36. PubMed ID: 19801471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation.
    Menkis A; Vasiliauskas R; Taylor AFS; Stenlid J; Finlay R
    Mycorrhiza; 2005 Dec; 16(1):33-41. PubMed ID: 16177926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host species and strain combination determine growth reduction of spruce and birch seedlings colonized by root-associated dark septate endophytes.
    Reininger V; Grünig CR; Sieber TN
    Environ Microbiol; 2012 Apr; 14(4):1064-76. PubMed ID: 22212126
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Thiergart T; Zgadzaj R; Bozsóki Z; Garrido-Oter R; Radutoiu S; Schulze-Lefert P
    mBio; 2019 Oct; 10(5):. PubMed ID: 31594815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes.
    Tellenbach C; Grünig CR; Sieber TN
    Appl Environ Microbiol; 2010 Sep; 76(17):5764-72. PubMed ID: 20601500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.
    Onwuchekwa NE; Zwiazek JJ; Quoreshi A; Khasa DP
    Mycorrhiza; 2014 Aug; 24(6):431-41. PubMed ID: 24424508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of stump and slash removal on growth and mycorrhization of Picea abies seedlings outplanted on a forest clear-cut.
    Menkis A; Uotila A; Arhipova N; Vasaitis R
    Mycorrhiza; 2010 Oct; 20(7):505-9. PubMed ID: 20174952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants.
    Lukešová T; Kohout P; Větrovský T; Vohník M
    PLoS One; 2015; 10(4):e0124752. PubMed ID: 25905493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative effects on survival and performance of Norway spruce seedlings colonized by dark septate root endophytes are primarily isolate-dependent.
    Tellenbach C; Grünig CR; Sieber TN
    Environ Microbiol; 2011 Sep; 13(9):2508-17. PubMed ID: 21812887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots.
    Lindner DL; Banik MT
    Mycologia; 2009; 101(1):157-65. PubMed ID: 19271678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and phenotypic description of the widespread root symbiont Acephala applanata gen. et sp. nov., formerly known as dark-septate endophyte type 1.
    Grünig CR; Sieber TN
    Mycologia; 2005; 97(3):628-40. PubMed ID: 16392252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neighboring Deschampsia flexuosa and Trientalis europaea harbor contrasting root fungal endophytic communities.
    Tejesvi MV; Sauvola T; Pirttilä AM; Ruotsalainen AL
    Mycorrhiza; 2013 Jan; 23(1):1-10. PubMed ID: 22592854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.