BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20173224)

  • 1. Electrical properties and memory effects of field-effect transistors from networks of single- and double-walled carbon nanotubes.
    Di Bartolomeo A; Rinzan M; Boyd AK; Yang Y; Guadagno L; Giubileo F; Barbara P
    Nanotechnology; 2010 Mar; 21(11):115204. PubMed ID: 20173224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-trapping effects caused by ammonia in carbon nanotubes.
    Li H; Zhang Q; Peng N; Liu N; Lee YC; Tan OK; Marazari N; Thompson CV
    J Nanosci Nanotechnol; 2007 Jan; 7(1):335-8. PubMed ID: 17455500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.
    Kim UJ; Lee EH; Kim JM; Min YS; Kim E; Park W
    Nanotechnology; 2009 Jul; 20(29):295201. PubMed ID: 19567966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-terminal nonvolatile memories based on single-walled carbon nanotubes.
    Yao J; Jin Z; Zhong L; Natelson D; Tour JM
    ACS Nano; 2009 Dec; 3(12):4122-6. PubMed ID: 19904998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors.
    Wang S; Liang XL; Chen Q; Zhang ZY; Peng LM
    J Phys Chem B; 2005 Sep; 109(37):17361-5. PubMed ID: 16853219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen and light sensitive field-effect transistors based on ZnO nanoparticles attached to individual double-walled carbon nanotubes.
    Chanaewa A; Juárez BH; Weller H; Klinke C
    Nanoscale; 2012 Jan; 4(1):251-6. PubMed ID: 22080380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of unipolar single-walled carbon nanotube field effect transistors to ambipolar induced by polystyrene nanosphere assembly.
    Wei D; Zhang Y; Yang Y; Hasko DG; Chu D; Teo KB; Amaratunga GA; Milne WI
    ACS Nano; 2008 Dec; 2(12):2526-30. PubMed ID: 19206288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q; Liu J
    Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Logic circuits with carbon nanotube transistors.
    Bachtold A; Hadley P; Nakanishi T; Dekker C
    Science; 2001 Nov; 294(5545):1317-20. PubMed ID: 11588220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memory effects based on random networks of single-walled carbon nanotubes.
    Lee KW; Heo KY; Kim KM; Kim HJ
    Nanotechnology; 2009 Oct; 20(40):405210. PubMed ID: 19752496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube thin film transistors based on aerosol methods.
    Zavodchikova MY; Kulmala T; Nasibulin AG; Ermolov V; Franssila S; Grigoras K; Kauppinen EI
    Nanotechnology; 2009 Feb; 20(8):085201. PubMed ID: 19417441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suspended carbon nanotube quantum wires with two gates.
    Cao J; Wang Q; Wang D; Dai H
    Small; 2005 Jan; 1(1):138-41. PubMed ID: 17193364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors.
    Liu K; Wang W; Xu Z; Bai X; Wang E; Yao Y; Zhang J; Liu Z
    J Am Chem Soc; 2009 Jan; 131(1):62-3. PubMed ID: 19093842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-free silicon-molecule-nanotube testbed and memory device.
    He J; Chen B; Flatt AK; Stephenson JJ; Doyle CD; Tour JM
    Nat Mater; 2006 Jan; 5(1):63-8. PubMed ID: 16327789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilevel non-volatile data storage utilizing common current hysteresis of networked single walled carbon nanotubes.
    Hwang I; Wang W; Hwang SK; Cho SH; Kim KL; Jeong B; Huh J; Park C
    Nanoscale; 2016 May; 8(19):10273-81. PubMed ID: 27129104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes.
    Qi P; Javey A; Rolandi M; Wang Q; Yenilmez E; Dai H
    J Am Chem Soc; 2004 Sep; 126(38):11774-5. PubMed ID: 15382895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes.
    Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z
    ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-sorted, aligned nanotube networks for thin-film transistors.
    LeMieux MC; Roberts M; Barman S; Jin YW; Kim JM; Bao Z
    Science; 2008 Jul; 321(5885):101-4. PubMed ID: 18599781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.