BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20173235)

  • 1. Thermo-mechanical stability and strength of peptide nanostructures from molecular dynamics: self-assembled cyclic peptide nanotubes.
    Diaz JA; Cağin T
    Nanotechnology; 2010 Mar; 21(11):115703. PubMed ID: 20173235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence length and stochastic fragmentation of supramolecular nanotubes under mechanical force.
    Ruiz L; VonAchen P; Lazzara TD; Xu T; Keten S
    Nanotechnology; 2013 May; 24(19):195103. PubMed ID: 23594966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic properties, Young's modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics.
    Lorenzo AC; Caffarena ER
    J Biomech; 2005 Jul; 38(7):1527-33. PubMed ID: 15922764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and stability of cyclic peptide based nanotubes: a molecular dynamics study of the influence of amino acid composition.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    Phys Chem Chem Phys; 2012 Nov; 14(43):15135-44. PubMed ID: 23041975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of organic nanofibers.
    Kjelstrup-Hansen J; Hansen O; Rubahn HG; Bøggild P
    Small; 2006 May; 2(5):660-6. PubMed ID: 17193104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules.
    Gautieri A; Buehler MJ; Redaelli A
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):130-7. PubMed ID: 19627816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics and umbrella sampling study of stabilizing factors in cyclic peptide-based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    J Phys Chem B; 2012 Aug; 116(33):9922-33. PubMed ID: 22804626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembling cyclic peptides: molecular dynamics studies of dimers in polar and nonpolar solvents.
    Khurana E; Nielsen SO; Ensing B; Klein ML
    J Phys Chem B; 2006 Sep; 110(38):18965-72. PubMed ID: 16986891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation.
    Vijayaraj R; Sundar Raman S; Mahesh Kumar R; Subramanian V
    J Phys Chem B; 2010 Dec; 114(49):16574-83. PubMed ID: 21087024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical model of the tubulin dimer based on molecular dynamics simulations.
    Enemark S; Deriu MA; Soncini M; Redaelli A
    J Biomech Eng; 2008 Aug; 130(4):041008. PubMed ID: 18601450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the antibacterial action of cyclic peptides: insights from coarse-grained MD simulations.
    Khalfa A; Tarek M
    J Phys Chem B; 2010 Mar; 114(8):2676-84. PubMed ID: 20143883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    Phys Chem Chem Phys; 2013 Jan; 15(4):1260-70. PubMed ID: 23229174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent Young's modulus of human radius using inverse finite-element method.
    Bosisio MR; Talmant M; Skalli W; Laugier P; Mitton D
    J Biomech; 2007; 40(9):2022-8. PubMed ID: 17097663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of ultrahigh-strength gold nanowires.
    Wu B; Heidelberg A; Boland JJ
    Nat Mater; 2005 Jul; 4(7):525-9. PubMed ID: 15937490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined use of molecular dynamics simulations and NMR to explore peptide bond isomerization and multiple intramolecular hydrogen-bonding possibilities in a cyclic pentapeptide, cyclo(Gly-Pro-D-Phe-Gly-Val).
    Liu ZP; Gierasch LM
    Biopolymers; 1992 Dec; 32(12):1727-39. PubMed ID: 1472655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study.
    Khavani M; Izadyar M; Housaindokht MR
    J Mol Graph Model; 2017 Jan; 71():28-39. PubMed ID: 27837688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic modulus of viral nanotubes.
    Zhao Y; Ge Z; Fang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031914. PubMed ID: 18851072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Templating silica nanostructures on rationally designed self-assembled peptide fibers.
    Holmström SC; King PJ; Ryadnov MG; Butler MF; Mann S; Woolfson DN
    Langmuir; 2008 Oct; 24(20):11778-83. PubMed ID: 18759469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermomechanical manipulation of aromatic peptide nanotubes.
    Sedman VL; Allen S; Chen X; Roberts CJ; Tendler SJ
    Langmuir; 2009 Jul; 25(13):7256-9. PubMed ID: 19496552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.