These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20173250)

  • 1. Characterization of spark plasma sintered Ag nanopowders.
    Fu YQ; Shearwood C; Xu B; Yu LG; Khor KA
    Nanotechnology; 2010 Mar; 21(11):115707. PubMed ID: 20173250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and Mechanical Properties of Nanocrystalline Al-Zn-Mg-Cu Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Cheng J; Cai Q; Zhao B; Yang S; Chen F; Li B
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite.
    Li H; Khor KA; Chow V; Cheang P
    J Biomed Mater Res A; 2007 Aug; 82(2):296-303. PubMed ID: 17274029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Mg2Si thermoelectric materials by mechanical alloying and spark-plasma sintering process.
    Lee CH; Lee SH; Chun SY; Lee SJ
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3429-32. PubMed ID: 17252782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of dense hydroxyapatite prepared using an SPS process.
    Nakahira A; Tamai M; Aritani H; Nakamura S; Yamashita K
    J Biomed Mater Res; 2002 Dec; 62(4):550-7. PubMed ID: 12221703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiwalled carbon nanotube monoliths prepared by spark plasma sintering (SPS) and their mechanical properties.
    Uo M; Hasegawa T; Akasaka T; Tanaka I; Munekane F; Omori M; Kimura H; Nakatomi R; Soga K; Kogo Y; Watari F
    Biomed Mater Eng; 2009; 19(1):11-7. PubMed ID: 19458441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tough yttria-stabilized zirconia ceramic by low-temperature spark plasma sintering of long-term stored nanopowders.
    Bezdorozhev O; Borodianska H; Sakka Y; Vasylkiv O
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7901-9. PubMed ID: 22097503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spark plasma sintering of alumina nanopowders produced by electrical explosion of wires.
    An V; Khasanov A; de Izarra C
    Springerplus; 2015; 4():581. PubMed ID: 26543716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of heating temperature on the sintering characteristics of sewage sludge ash.
    Lin KL; Chiang KY; Lin DF
    J Hazard Mater; 2006 Feb; 128(2-3):175-81. PubMed ID: 16153769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects.
    Grossin D; Rollin-Martinet S; Estournès C; Rossignol F; Champion E; Combes C; Rey C; Geoffroy C; Drouet C
    Acta Biomater; 2010 Feb; 6(2):577-85. PubMed ID: 19686872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Milling-Assisted Spark Plasma Sintering of Fine-Grained W-Ni-Mn Alloy.
    Pan Y; Xiang D; Wang N; Li H; Fan Z
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30065176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites.
    Zhang Y; Hao L; Savalani MM; Harris RA; Tanner KE
    J Biomed Mater Res A; 2008 Sep; 86(3):607-16. PubMed ID: 18022838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior.
    Xu JL; Khor KA; Gu YW; Kumar R; Cheang P
    Biomaterials; 2005 May; 26(15):2197-207. PubMed ID: 15585221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal Microstructure in an AlZrTi Alloy Prepared by Mechanical Milling and Spark Plasma Sintering.
    Molnárová O; Duchoň J; de Prado E; Csáki Š; Průša F; Málek P
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32854337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.
    Yu YT; Naik GK; Lim YB; Yoon JM
    Nanoscale Res Lett; 2017 Nov; 12(1):606. PubMed ID: 29177596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Characterization of Thermoelectric CrSi2 Compound by Mechanical Alloying and Spark Plasma Sintering.
    Lee CH
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5070-3. PubMed ID: 26373080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.
    Saheb N; Aliyu IK; Hassan SF; Al-Aqeeli N
    Materials (Basel); 2014 Sep; 7(9):6748-6767. PubMed ID: 28788210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering.
    Zhang H; Kim BN; Morita K; Keijiro Hiraga HY; Sakka Y
    Sci Technol Adv Mater; 2011 Oct; 12(5):055003. PubMed ID: 27877441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spark plasma sintered Sm(2)Co(17)-FeCo nanocomposite permanent magnets synthesized by high energy ball milling.
    Sreenivasulu G; Gopalan R; Chandrasekaran V; Markandeyulu G; Suresh KG; Murty BS
    Nanotechnology; 2008 Aug; 19(33):335701. PubMed ID: 21730627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.