BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20173906)

  • 1. A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures.
    Ma WY; Yang H; Hilton JP; Lin Q; Liu JY; Huang LX; Yao J
    Opt Express; 2010 Jan; 18(2):843-53. PubMed ID: 20173906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF; Lin YJ; Tsai DP
    Opt Express; 2010 Feb; 18(4):3510-8. PubMed ID: 20389360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance.
    Ma WY; Yao J; Yang H; Liu JY; Li F; Hilton JP; Lin Q
    Opt Express; 2009 Aug; 17(17):14967-76. PubMed ID: 19687975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection.
    Li CT; Chen HF; Un IW; Lee HC; Yen TJ
    Opt Express; 2012 Jan; 20(3):3250-60. PubMed ID: 22330563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry breaking induced optical properties of gold open shell nanostructures.
    Ye J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Opt Express; 2009 Dec; 17(26):23765-71. PubMed ID: 20052087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS-active substrate based on gap surface plasmon polaritons.
    Kim HC; Cheng X
    Opt Express; 2009 Sep; 17(20):17234-41. PubMed ID: 19907510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders.
    Sung MJ; Ma YF; Chau YF; Huang DW
    Appl Opt; 2010 Feb; 49(5):920-6. PubMed ID: 20154763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates.
    Shegai T; Brian B; Miljković VD; Käll M
    ACS Nano; 2011 Mar; 5(3):2036-41. PubMed ID: 21323329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface plasmon cross-talk on optical properties of closely packed nano-hole arrays.
    Vasefi F; Najiminaini M; Kaminska B; Carson JJ
    Opt Express; 2011 Dec; 19(25):25773-9. PubMed ID: 22273969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction and spectral gaps of surface plasmon modes in gold nano-structures.
    Kolomenskii A; Peng S; Hembd J; Kolomenski A; Noel J; Strohaber J; Teizer W; Schuessler H
    Opt Express; 2011 Mar; 19(7):6587-98. PubMed ID: 21451686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic oligomers: the role of individual particles in collective behavior.
    Hentschel M; Dregely D; Vogelgesang R; Giessen H; Liu N
    ACS Nano; 2011 Mar; 5(3):2042-50. PubMed ID: 21344858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of retardation on localized surface plasmon resonances in a metallic nanorod.
    Davis TJ; Vernon KC; Gómez DE
    Opt Express; 2009 Dec; 17(26):23655-63. PubMed ID: 20052075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances.
    Fischer J; Vogel N; Mohammadi R; Butt HJ; Landfester K; Weiss CK; Kreiter M
    Nanoscale; 2011 Nov; 3(11):4788-97. PubMed ID: 21952954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabolical point and conical-like diffraction in periodic plasmonic nanostructures.
    Nam SH; Taylor AJ; Efimov A
    Opt Express; 2010 May; 18(10):10120-6. PubMed ID: 20588866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.