These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20173936)

  • 1. Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view.
    Wei X; Thibos L
    Opt Express; 2010 Jan; 18(2):1134-43. PubMed ID: 20173936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer.
    Shen J; Thibos LN
    Clin Exp Optom; 2009 May; 92(3):212-22. PubMed ID: 19462503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binocular open-view system to perform estimations of aberrations and scattering in the human eye.
    García-Guerra CE; Aldaba M; Arjona M; Pujol J
    Appl Opt; 2015 Nov; 54(32):9504-8. PubMed ID: 26560778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a Clinical Aberrometer Using Pyramidal Wavefront Sensing.
    Singh NK; Jaskulski M; Ramasubramanian V; Meyer D; Reed O; Rickert ME; Bradley A; Kollbaum PS
    Optom Vis Sci; 2019 Oct; 96(10):733-744. PubMed ID: 31592956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor.
    Altoaimi BH; Kollbaum P; Meyer D; Bradley A
    Ophthalmic Physiol Opt; 2018 Mar; 38(2):152-163. PubMed ID: 29315718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic error of a large dynamic range aberrometer.
    Wu P; DeHoog E; Schwiegerling J
    Appl Opt; 2009 Nov; 48(32):6376-80. PubMed ID: 19904339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes.
    Yoon G; Pantanelli S; Nagy LJ
    J Biomed Opt; 2006; 11(3):30502. PubMed ID: 16822048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serial measurements of accommodation by open-field Hartmann-Shack wavefront aberrometer in eyes with accommodative spasm.
    Kanda H; Kobayashi M; Mihashi T; Morimoto T; Nishida K; Fujikado T
    Jpn J Ophthalmol; 2012 Nov; 56(6):617-23. PubMed ID: 23008062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a clinical Shack-Hartmann aberrometer.
    Cheng X; Himebaugh NL; Kollbaum PS; Thibos LN; Bradley A
    Optom Vis Sci; 2003 Aug; 80(8):587-95. PubMed ID: 12917578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and validity of a miniaturized open-field aberrometer.
    Bhatt UK; Sheppard AL; Shah S; Dua HS; Mihashi T; Yamaguchi T; Wolffsohn JS
    J Cataract Refract Surg; 2013 Jan; 39(1):36-40. PubMed ID: 23107833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeatability of peripheral aberrations in young emmetropes.
    Baskaran K; Theagarayan B; Carius S; Gustafsson J
    Optom Vis Sci; 2010 Oct; 87(10):751-9. PubMed ID: 20818283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twisted-nematic liquid-crystal-on-silicon adaptive optics aberrometer and wavefront corrector.
    Eng SH; Reinholz F; Chai D
    J Biomed Opt; 2009; 14(4):044014. PubMed ID: 19725726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profile of off-axis higher order aberrations and its variation with time among various refractive error groups.
    Philip K; Sankaridurg PR; Ale JB; Naduvilath TJ; Mitchell P
    Vision Res; 2018 Dec; 153():111-123. PubMed ID: 30201474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of the Hand-held Wavefront Aberrometer in Measurement of Refractive Error.
    Han JY; Yoon S; Brown NS; Han SH; Han J
    Korean J Ophthalmol; 2020 Jun; 34(3):227-234. PubMed ID: 32495531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binocular open-view Shack-Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration.
    Kobayashi M; Nakazawa N; Yamaguchi T; Otaki T; Hirohara Y; Mihashi T
    Appl Opt; 2008 Sep; 47(25):4619-26. PubMed ID: 18758533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new wavefront sensor with polar symmetry: quantitative comparisons with a Shack-Hartmann wavefront sensor.
    Carvalho LA; Castro J; Chamon W; Schor P
    J Refract Surg; 2006 Nov; 22(9):954-8. PubMed ID: 17124896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the SVOne Handheld Autorefractor in a Pediatric Population.
    Rosenfield M; Ciuffreda KJ
    Optom Vis Sci; 2017 Feb; 94(2):159-165. PubMed ID: 27668640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses.
    Charman WN; Montés-Micó R; Radhakrishnan H
    J Refract Surg; 2008 Mar; 24(3):280-6. PubMed ID: 18416263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wavelength tunable wavefront sensor for the human eye.
    Manzanera S; Canovas C; Prieto PM; Artal P
    Opt Express; 2008 May; 16(11):7748-55. PubMed ID: 18545485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis.
    Sáles CS; Manche EE
    J Cataract Refract Surg; 2015 Sep; 41(9):1820-5. PubMed ID: 26603389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.