These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 20173990)

  • 1. Single step self-enclosed fluidic channels via Two Photon Absorption (TPA) polymerization.
    Jariwala S; Venkatakrishnan K; Tan B
    Opt Express; 2010 Jan; 18(2):1630-6. PubMed ID: 20173990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate.
    Venkatakrishnan K; Jariwala S; Tan B
    Opt Express; 2009 Feb; 17(4):2756-62. PubMed ID: 19219180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse-exposure technique in holographic two-photon polymerization.
    Takahashi H; Hasegawa S; Takita A; Hayasaki Y
    Opt Express; 2008 Oct; 16(21):16592-9. PubMed ID: 18852768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High numerical aperture hybrid optics for two-photon polymerization.
    Burmeister F; Zeitner UD; Nolte S; Tünnermann A
    Opt Express; 2012 Mar; 20(7):7994-8005. PubMed ID: 22453471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-pulse multiphoton polymerization of complex structures using a digital multimirror device.
    Mills B; Grant-Jacob JA; Feinaeugle M; Eason RW
    Opt Express; 2013 Jun; 21(12):14853-8. PubMed ID: 23787672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid lithography: combining UV-exposure and two photon direct laser writing.
    Eschenbaum C; Großmann D; Dopf K; Kettlitz S; Bocksrocker T; Valouch S; Lemmer U
    Opt Express; 2013 Dec; 21(24):29921-6. PubMed ID: 24514543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2013 Dec; 21(25):30731-8. PubMed ID: 24514649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic.
    Hung KY; Fan CC; Tseng FG; Chen YK
    Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels.
    Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C
    Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-wavelength nanofluidics in photonic crystal sensors.
    Huang M; Yanik AA; Chang TY; Altug H
    Opt Express; 2009 Dec; 17(26):24224-33. PubMed ID: 20052133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.
    Lee JT; George MC; Moore JS; Braun PV
    J Am Chem Soc; 2009 Aug; 131(32):11294-5. PubMed ID: 19637870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of molecularly imprinted polymer microarray on a chip by mid-infrared laser pulse initiated polymerisation.
    Henry OY; Piletsky SA; Cullen DC
    Biosens Bioelectron; 2008 Jul; 23(12):1769-75. PubMed ID: 18378439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses.
    Malinauskas M; Zukauskas A; Bickauskaite G; Gadonas R; Juodkazis S
    Opt Express; 2010 May; 18(10):10209-21. PubMed ID: 20588875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon absorption property of a conjugated polymer: influence of solvent and concentration on its property.
    Wang H; Li Z; Shao P; Qin J; Huang ZL
    J Phys Chem B; 2010 Jan; 114(1):22-7. PubMed ID: 20014827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of large-area polymer nanopillar arrays into microfluidic devices using in situ polymerization cast molding.
    Chen G; McCandless GT; McCarley RL; Soper SA
    Lab Chip; 2007 Nov; 7(11):1424-7. PubMed ID: 17960266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-adaptive fluidic probe for electrical caries detection.
    Chang SH; Su YC
    Biomed Microdevices; 2008 Jun; 10(3):447-57. PubMed ID: 18202919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.
    Chau SW; Hsu KL; Chen SC; Liou TM; Shih KC
    Biosens Bioelectron; 2004 Jul; 20(1):133-8. PubMed ID: 15142586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-focus two-photon polymerization technique based on individually controlled phase modulation.
    Obata K; Koch J; Hinze U; Chichkov BN
    Opt Express; 2010 Aug; 18(16):17193-200. PubMed ID: 20721108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.