These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20174)

  • 1. The CO and NO Bohr effect of human hemoglobin with and without inositolhexaphosphate.
    de Bruin SH; Boen FJ; Rollema HS; van Beek GG
    Biophys Chem; 1977 Sep; 7(2):169-72. PubMed ID: 20174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source of residual Bohr effect in hemoglobin oxidation.
    Bull C; Goncher G; Deutschman CS; Hoffman BM
    J Biol Chem; 1977 May; 252(10):3128-30. PubMed ID: 16881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Bohr group salt bridges in cooperativity in hemoglobin.
    Kilmartin JV; Imai K; Jones RT; Faruqui AR; Fogg J; Baldwin JM
    Biochim Biophys Acta; 1978 May; 534(1):15-25. PubMed ID: 26416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of organic phosphates on the Bohr effect of human hemoglobin valency hybrids.
    Rollema HS; De Bruin SH; Van Os GA
    Biophys Chem; 1976 May; 4(3):223-8. PubMed ID: 7327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion modulation of the negative Bohr effect of haemoglobin from a primitive amphibian.
    Bonaventura C; Sullivan B; Bonaventura J; Bourne S
    Nature; 1977 Feb; 265(5593):474-6. PubMed ID: 13309
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of heme and non-heme ligands on subunit dissociation of normal and carboxypeptidase-digested hemoglobin. Gel filtration and flash photolysis studies.
    Chiancone E; Anderson NM; Antonini E; Bonaventura J; Bonaventura C; Brunori M; Spagnuolo C
    J Biol Chem; 1974 Sep; 249(18):5689-94. PubMed ID: 4413057
    [No Abstract]   [Full Text] [Related]  

  • 7. The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of alpha-helices.
    Perutz MF; Gronenborn AM; Clore GM; Fogg JH; Shih DT
    J Mol Biol; 1985 Jun; 183(3):491-8. PubMed ID: 4020866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray and functional studies of hemoglobins Nancy and Cochin-Port-Royal.
    Arnone A
    J Biol Chem; 1976 Oct; 251(19):5875-80. PubMed ID: 9405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of organic phosphates with bovine hemoglobin. I. Oxylabile and phosphate-labile proton binding.
    Breepoel PM; Kreuzer F; Hazevoet M
    Pflugers Arch; 1981 Mar; 389(3):219-25. PubMed ID: 6262706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effector-induced structural fluctuation regulates the ligand affinity of an allosteric protein: binding of inositol hexaphosphate has distinct dynamic consequences for the T and R states of hemoglobin.
    Song XJ; Simplaceanu V; Ho NT; Ho C
    Biochemistry; 2008 Apr; 47(17):4907-15. PubMed ID: 18376851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geminate recombination in carboxy hemoglobin A and its relation to overall carbon monoxide reactivity.
    Campbell BF; Magde D; Sharma VS
    J Mol Biol; 1984 Oct; 179(1):143-50. PubMed ID: 6502708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the Bohr group salt bridges to ligation of the T state of haemoglobin Kansas.
    Kilmartin JV; Anderson NL
    J Mol Biol; 1978 Jul; 123(1):71-87. PubMed ID: 28419
    [No Abstract]   [Full Text] [Related]  

  • 13. Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin.
    Kilmartin JV; Breen JJ; Roberts GC; Ho C
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1246-9. PubMed ID: 4515623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ligand-binding properties of desHis (146beta) hemoglobin.
    Moffat K; Olson JS; Gibson QH; Kilmartin JV
    J Biol Chem; 1973 Sep; 248(18):6387-93. PubMed ID: 4730324
    [No Abstract]   [Full Text] [Related]  

  • 15. Ligand-dependent Bohr effect of Chrionomus hemoglobins.
    Steffens G; Buse G; Wollmer A
    Eur J Biochem; 1977 Jan; 72(1):201-6. PubMed ID: 12977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin Bohr effects: atomic origin of the histidine residue contributions.
    Zheng G; Schaefer M; Karplus M
    Biochemistry; 2013 Nov; 52(47):8539-55. PubMed ID: 24224786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of inositol hexakisphosphate with liganded ferrous human hemoglobin. Direct evidence for two functionally operative binding sites.
    Coletta M; Ascenzi P; Santucci R; Bertollini A; Amiconi G
    Biochim Biophys Acta; 1993 Mar; 1162(3):309-14. PubMed ID: 8457595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen equilibrium studies of cross-linked iron-cobalt hybrid hemoglobins. Models for partially ligated intermediates of cobalt hemoglobin.
    Tsuneshige A; Zhou YX; Yonetani T
    J Biol Chem; 1993 Nov; 268(31):23031-40. PubMed ID: 8226818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of beta 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin.
    Fang TY; Zou M; Simplaceanu V; Ho NT; Ho C
    Biochemistry; 1999 Oct; 38(40):13423-32. PubMed ID: 10529219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional studies of hemoglobin Barcelona (alpha 2 beta 2 94 Asp (FG1) replaced by His). Consequences of altering an important intrachain salt bridge involved in the alkaline Bohr effect.
    Wajcman H; Aguilar i Bascompte JL; Labie D; Poyart C; Bohn B
    J Mol Biol; 1982 Mar; 156(1):185-202. PubMed ID: 7097767
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.