BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 20174107)

  • 1. Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging.
    Ortiz S; Siedlecki D; Grulkowski I; Remon L; Pascual D; Wojtkowski M; Marcos S
    Opt Express; 2010 Feb; 18(3):2782-96. PubMed ID: 20174107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography for quantitative surface topography.
    Ortiz S; Siedlecki D; Remon L; Marcos S
    Appl Opt; 2009 Dec; 48(35):6708-15. PubMed ID: 20011011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic intraocular lens segmentation and detection in optical coherence tomography images.
    Gillner M; Eppig T; Langenbucher A
    Z Med Phys; 2014 May; 24(2):104-11. PubMed ID: 23928353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior ocular biometry using 3-dimensional optical coherence tomography.
    Fukuda S; Kawana K; Yasuno Y; Oshika T
    Ophthalmology; 2009 May; 116(5):882-9. PubMed ID: 19410946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Optical coherence tomography: from retina imaging to intraoperative use - a review].
    Hüttmann G; Lankenau E; Schulz-Wackerbarth C; Müller M; Steven P; Birngruber R
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):958-64. PubMed ID: 20108189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy.
    Miura M; Kawana K; Iwasaki T; Kiuchi T; Oshika T; Mori H; Yamanari M; Makita S; Yatagai T; Yasuno Y
    J Glaucoma; 2008; 17(3):193-6. PubMed ID: 18414104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomography-based customized IOL calculation model.
    Zhu Z; Janunts E; Eppig T; Sauer T; Langenbucher A
    Curr Eye Res; 2011 Jun; 36(6):579-89. PubMed ID: 21591867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and dynamic analysis of the anterior segment with optical coherence tomography.
    Baikoff G; Lutun E; Ferraz C; Wei J
    J Cataract Refract Surg; 2004 Sep; 30(9):1843-50. PubMed ID: 15342045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automated biometry of in situ intraocular lenses using long scan depth spectral-domain optical coherence tomography.
    Chen Q; Leng L; Zhu D; Wang Y; Shao Y; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jan; 40(1):37-45. PubMed ID: 24335453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnification characteristics of the Optical Coherence Tomograph STRATUS OCT 3000.
    Sanchez-Cano A; Baraibar B; Pablo LE; Honrubia FM
    Ophthalmic Physiol Opt; 2008 Jan; 28(1):21-8. PubMed ID: 18201332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography of the anterior segment in eyes with phakic refractive lenses.
    Koivula A; Kugelberg M
    Ophthalmology; 2007 Nov; 114(11):2031-7. PubMed ID: 17765311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral optical coherence tomography in video-rate and 3D imaging of contact lens wear.
    Kaluzny BJ; Fojt W; Szkulmowska A; Bajraszewski T; Wojtkowski M; Kowalczyk A
    Optom Vis Sci; 2007 Dec; 84(12):1104-9. PubMed ID: 18091301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography.
    Wylegała E; Teper S; Nowińska AK; Milka M; Dobrowolski D
    J Cataract Refract Surg; 2009 Aug; 35(8):1410-4. PubMed ID: 19631129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of intraocular lens tilt with anterior segment optical coherence tomography.
    Kumar DA; Agarwal A; Prakash G; Jacob S; Saravanan Y; Agarwal A
    Am J Ophthalmol; 2011 Mar; 151(3):406-12.e2. PubMed ID: 21236406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study.
    de Castro A; Rosales P; Marcos S
    J Cataract Refract Surg; 2007 Mar; 33(3):418-29. PubMed ID: 17321392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography.
    Kawana K; Kiuchi T; Yasuno Y; Oshika T
    Ophthalmology; 2009 May; 116(5):848-55. PubMed ID: 19268366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle.
    Sakata LM; Lavanya R; Friedman DS; Aung HT; Gao H; Kumar RS; Foster PJ; Aung T
    Ophthalmology; 2008 May; 115(5):769-74. PubMed ID: 17916377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye.
    Wang J; Abou Shousha M; Perez VL; Karp CL; Yoo SH; Shen M; Cui L; Hurmeric V; Du C; Zhu D; Chen Q; Li M
    Ophthalmic Surg Lasers Imaging; 2011 Jul; 42 Suppl():S15-27. PubMed ID: 21790108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [New diagnostic methods for imaging the anterior segment of the eye to enable treatment modalities selection].
    Maeda N
    Nippon Ganka Gakkai Zasshi; 2011 Mar; 115(3):297-322; discussion 323. PubMed ID: 21476312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye.
    Shen M; Wang MR; Yuan Y; Chen F; Karp CL; Yoo SH; Wang J
    Ophthalmic Surg Lasers Imaging; 2010; 41 Suppl():S65-9. PubMed ID: 21117604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.