These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 20174108)

  • 21. Ultra-high sensitivity sensing based on ultraviolet plasmonic enhancements in semiconductor triangular prism meta-antenna systems.
    He Z; Li Z; Li C; Xue W; Cui W
    Opt Express; 2020 Jun; 28(12):17595-17610. PubMed ID: 32679965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots.
    Zhang Y; Han Z
    Sci Rep; 2015 Dec; 5():18606. PubMed ID: 26691003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface enhancement of THz wave by coupling a subwavelength LiNbO
    Zhang Q; Qi J; Wu Q; Lu Y; Zhao W; Wang R; Pan C; Wang S; Xu J
    Sci Rep; 2017 Dec; 7(1):17602. PubMed ID: 29242537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime.
    Han Z; Zhang Y; Bozhevolnyi SI
    Opt Lett; 2015 Jun; 40(11):2533-6. PubMed ID: 26030550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active terahertz beam steering by photo-generated graded index gratings in thin semiconductor films.
    Steinbusch TP; Tyagi HK; Schaafsma MC; Georgiou G; Gómez Rivas J
    Opt Express; 2014 Nov; 22(22):26559-71. PubMed ID: 25401807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light scattering, field localization and local density of states in co-axial plasmonic nanowires.
    Lawrence N; Dal Negro L
    Opt Express; 2010 Jul; 18(15):16120-32. PubMed ID: 20720997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lattice resonances in antenna arrays for liquid sensing in the terahertz regime.
    Ng B; Hanham SM; Giannini V; Chen ZC; Tang M; Liew YF; Klein N; Hong MH; Maier SA
    Opt Express; 2011 Jul; 19(15):14653-61. PubMed ID: 21934827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconfigurable THz Plasmonic Antenna Based on Few-Layer Graphene with High Radiation Efficiency.
    Hosseininejad SE; Neshat M; Faraji-Dana R; Lemme M; Haring Bolívar P; Cabellos-Aparicio A; Alarcón E; Abadal S
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30060569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.
    Seren HR; Zhang J; Keiser GR; Maddox SJ; Zhao X; Fan K; Bank SR; Zhang X; Averitt RD
    Light Sci Appl; 2016 May; 5(5):e16078. PubMed ID: 30167165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance Photoluminescence Enhancement of Monolayer MoS
    You Q; Li Z; Li Y; Qiu L; Bi X; Zhang L; Zhang D; Fang Y; Wang P
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35575696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas.
    Mancini A; Gubbin CR; Berté R; Martini F; Politi A; Cortés E; Li Y; De Liberato S; Maier SA
    ACS Nano; 2020 Jul; 14(7):8508-8517. PubMed ID: 32530605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical control of terahertz nano antennas on VO2 thin film.
    Jeong YG; Bernien H; Kyoung JS; Park HR; Kim HS; Choi JW; Kim BJ; Kim HT; Ahn KJ; Kim DS
    Opt Express; 2011 Oct; 19(22):21211-5. PubMed ID: 22108973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manifestation of Kinetic Inductance in Terahertz Plasmon Resonances in Thin-Film Cd
    Chanana A; Lotfizadeh N; Condori Quispe HO; Gopalan P; Winger JR; Blair S; Nahata A; Deshpande VV; Scarpulla MA; Sensale-Rodriguez B
    ACS Nano; 2019 Apr; 13(4):4091-4100. PubMed ID: 30865427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas.
    Zhang Q; Xiao JJ; Li M; Han D; Gao L
    Sci Rep; 2015 Nov; 5():17234. PubMed ID: 26611726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active role of oxide layers on the polarization of plasmonic nanostructures.
    D'Agostino S; Della Sala F
    ACS Nano; 2010 Jul; 4(7):4117-25. PubMed ID: 20536221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial distribution of electric-field enhancement across the gap of terahertz bow-tie antennas.
    Runge M; Engel D; Schneider M; Reimann K; Woerner M; Elsaesser T
    Opt Express; 2020 Aug; 28(17):24389-24398. PubMed ID: 32906980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface.
    Ingram DB; Linic S
    J Am Chem Soc; 2011 Apr; 133(14):5202-5. PubMed ID: 21425795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum coherence in an optical modulator.
    Carter SG; Birkedal V; Wang CS; Coldren LA; Maslov AV; Citrin DS; Sherwin MS
    Science; 2005 Oct; 310(5748):651-3. PubMed ID: 16254182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene Nano-Optics in the Terahertz Gap.
    Feres FH; Barcelos ID; Cadore AR; Wehmeier L; Nörenberg T; Mayer RA; Freitas RO; Eng LM; Kehr SC; Maia FCB
    Nano Lett; 2023 May; 23(9):3913-3920. PubMed ID: 37126430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.