BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20174115)

  • 1. Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering.
    Joo C; Evans CL; Stepinac T; Hasan T; de Boer JF
    Opt Express; 2010 Feb; 18(3):2858-71. PubMed ID: 20174115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-based dynamic light scattering microscopy: theory and numerical analysis.
    Joo C; de Boer JF
    Appl Opt; 2013 Nov; 52(31):7618-28. PubMed ID: 24216666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler fluctuation spectroscopy of intracellular dynamics in living tissue.
    Li Z; Sun H; Turek J; Jalal S; Childress M; Nolte DD
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):665-677. PubMed ID: 31044988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography.
    Kalkman J; Sprik R; van Leeuwen TG
    Phys Rev Lett; 2010 Nov; 105(19):198302. PubMed ID: 21231201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Intermittent Model for Intracellular Motions of Gold Nanostars by k-Space Scattering Image Correlation.
    Bouzin M; Sironi L; Chirico G; D'Alfonso L; Inverso D; Pallavicini P; Collini M
    Biophys J; 2015 Dec; 109(11):2246-58. PubMed ID: 26636936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of dye diffusion in scattering tissue phantoms using dual-wavelength low-coherence interferometry.
    Storen T; Royset A; Svaasand LO; Lindmo T
    J Biomed Opt; 2006; 11(1):014017. PubMed ID: 16526894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving directional ambiguity in dynamic light scattering-based transverse motion velocimetry in optical coherence tomography.
    Huang BK; Choma MA
    Opt Lett; 2014 Feb; 39(3):521-4. PubMed ID: 24487855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent light scattering from cellular dynamics in living tissues.
    Nolte DD
    Rep Prog Phys; 2024 Mar; 87(3):. PubMed ID: 38433567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-field amplitude and phase recovery using phase-shifting interferometry.
    Deutsch B; Hillenbrand R; Novotny L
    Opt Express; 2008 Jan; 16(2):494-501. PubMed ID: 18542124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy.
    Davis BJ; Ralston TS; Marks DL; Boppart SA; Carney PS
    Opt Lett; 2007 Jun; 32(11):1441-3. PubMed ID: 17546148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic light scattering optical coherence tomography to probe motion of subcellular scatterers.
    Arezza NJJ; Razani M; Kolios MC
    J Biomed Opt; 2019 Feb; 24(2):1-7. PubMed ID: 30770677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting apoptosis using dynamic light scattering with optical coherence tomography.
    Farhat G; Mariampillai A; Yang VX; Czarnota GJ; Kolios MC
    J Biomed Opt; 2011 Jul; 16(7):070505. PubMed ID: 21806246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinning disk interferometric scattering confocal microscopy captures millisecond timescale dynamics of living cells.
    Hsiao YT; Wu TY; Wu BK; Chu SW; Hsieh CL
    Opt Express; 2022 Dec; 30(25):45233-45245. PubMed ID: 36522930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.
    Tang J; Erdener SE; Li B; Fu B; Sakadzic S; Carp SA; Lee J; Boas DA
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28700129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-of-flight resolved light field fluctuations reveal deep human tissue physiology.
    Kholiqov O; Zhou W; Zhang T; Du Le VN; Srinivasan VJ
    Nat Commun; 2020 Jan; 11(1):391. PubMed ID: 31959896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-field optical coherence tomography using immersion Mirau interference microscope.
    Lu SH; Chang CJ; Kao CF
    Appl Opt; 2013 Jun; 52(18):4400-3. PubMed ID: 23842185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology.
    Yamauchi T; Iwai H; Miwa M; Yamashita Y
    Opt Express; 2008 Aug; 16(16):12227-38. PubMed ID: 18679500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy measurements and improvement for complete characterization of optical pulses from nonlinear processes via multiple spectral-shearing interferometry.
    Wyatt AS; Grün A; Bates PK; Chalus O; Biegert J; Walmsley IA
    Opt Express; 2011 Dec; 19(25):25355-66. PubMed ID: 22273927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay.
    Joo C; Ozkumur E; Unlü MS; Boer JF
    Biosens Bioelectron; 2009 Oct; 25(2):275-81. PubMed ID: 19674885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-modulation laser interference microscopy: an advance in cell imaging and dynamics study.
    Brazhe AR; Brazhe NA; Maksimov GV; Ignatyev PS; Rubin AB; Mosekilde E; Sosnovtseva OV
    J Biomed Opt; 2008; 13(3):034004. PubMed ID: 18601549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.