BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20174115)

  • 41. Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images.
    Esteban R; Vogelgesang R; Kern K
    Ultramicroscopy; 2011; 111(9-10):1469-74. PubMed ID: 21930018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis.
    Chalut KJ; Ostrander JH; Giacomelli MG; Wax A
    Cancer Res; 2009 Feb; 69(3):1199-204. PubMed ID: 19141640
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Method for broadband spectroscopy of light transport through opaque scattering media.
    Muskens OL; Lagendijk A
    Opt Lett; 2009 Feb; 34(4):395-7. PubMed ID: 19373319
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional intracellular optical coherence phase imaging.
    Helderman F; Haslam B; de Boer JF; de Groot M
    Opt Lett; 2013 Feb; 38(4):431-3. PubMed ID: 23455092
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach.
    Elaloufi R; Carminati R; Greffet JJ
    J Opt Soc Am A Opt Image Sci Vis; 2004 Aug; 21(8):1430-7. PubMed ID: 15330470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study of optical parameters of polystyrene spheres in dense aqueous suspensions.
    Xia H; Miao C; Cheng J; Tao S; Pang R; Wu X
    Appl Opt; 2012 Jun; 51(16):3263-8. PubMed ID: 22695559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial coherence in strongly scattering media.
    Pierrat R; Greffet JJ; Carminati R; Elaloufi R
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2329-37. PubMed ID: 16302386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy.
    Meller A; Bar-Ziv R; Tlusty T; Moses E; Stavans J; Safran SA
    Biophys J; 1998 Mar; 74(3):1541-8. PubMed ID: 9512050
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    J Biomed Opt; 2007; 12(2):024020. PubMed ID: 17477735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy.
    Sheppard CJ; Kou SS; Depeursinge C
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):244-50. PubMed ID: 22472753
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering.
    Jurna M; Korterik JP; Otto C; Herek JL; Offerhaus HL
    Phys Rev Lett; 2009 Jul; 103(4):043905. PubMed ID: 19659356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scattering information obtained by optical microscopy: differential dynamic microscopy and beyond.
    Giavazzi F; Brogioli D; Trappe V; Bellini T; Cerbino R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031403. PubMed ID: 19905112
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Confocal diffraction phase microscopy of live cells.
    Lue N; Choi W; Badizadegan K; Dasari RR; Feld MS; Popescu G
    Opt Lett; 2008 Sep; 33(18):2074-6. PubMed ID: 18794935
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography.
    Jeong K; Turek JJ; Nolte DD
    J Biomed Opt; 2010; 15(3):030514. PubMed ID: 20614997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-coherence dynamic light scattering and its potential for measuring cell dynamics.
    Ishii K; Iwai T
    Curr Pharm Biotechnol; 2012 Nov; 13(14):2562-8. PubMed ID: 22039805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cavity-Amplified Scattering Spectroscopy Reveals the Dynamics of Proteins and Nanoparticles in Quasi-transparent and Miniature Samples.
    Graciani G; King JT; Amblard F
    ACS Nano; 2022 Oct; 16(10):16796-16805. PubMed ID: 36039927
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    Opt Express; 2010 Feb; 18(3):2849-57. PubMed ID: 20174114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Directional optical coherence tomography reveals melanin concentration-dependent scattering properties of retinal pigment epithelium.
    Meleppat RK; Zhang P; Ju MJ; Manna SK; Jian Y; Pugh EN; Zawadzki RJ
    J Biomed Opt; 2019 Jun; 24(6):1-10. PubMed ID: 31254332
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Scattering attenuation microscopy of oral epithelial dysplasia.
    Tomlins PH; Adegun O; Hagi-Pavli E; Piper K; Bader D; Fortune F
    J Biomed Opt; 2010; 15(6):066003. PubMed ID: 21198177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing.
    Tao X; Bodington D; Reinig M; Kubby J
    Opt Express; 2015 Jun; 23(11):14168-87. PubMed ID: 26072785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.