These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2017430)

  • 1. Nutrient composition and anti-nutritional factors in selected vegetable soybean (Glycine max [L.] Merr.).
    Mohamed AI; Mebrahtu T; Rangappa M
    Plant Foods Hum Nutr; 1991 Jan; 41(1):89-100. PubMed ID: 2017430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening soybean (grain and vegetable) genotypes for nutrients and anti-nutritional factors.
    Mohamed AI; Rangappa M
    Plant Foods Hum Nutr; 1992 Jan; 42(1):87-96. PubMed ID: 1546056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of phytate in vegetable-type soybean genotypes harvested at four developmental stages.
    Mebrahtu T; Mohamed A; Elmi A
    Plant Foods Hum Nutr; 1997; 50(3):179-87. PubMed ID: 9373869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).
    Yuan FJ; Zhu DH; Deng B; Fu XJ; Dong DK; Zhu SL; Li BQ; Shu QY
    J Agric Food Chem; 2009 May; 57(9):3632-8. PubMed ID: 19323582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron availability to rats from soybeans.
    Welch RM; Van Campen R
    J Nutr; 1975 Feb; 105(2):253-6. PubMed ID: 1167584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans.
    Padgette SR; Taylor NB; Nida DL; Bailey MR; MacDonald J; Holden LR; Fuchs RL
    J Nutr; 1996 Mar; 126(3):702-16. PubMed ID: 8598556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in phytic acid content and protein digestibility of grain legumes.
    Chitra U; Vimala V; Singh U; Geervani P
    Plant Foods Hum Nutr; 1995 Feb; 47(2):163-72. PubMed ID: 7792265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.).
    Yuan FJ; Zhao HJ; Ren XL; Zhu SL; Fu XJ; Shu QY
    Theor Appl Genet; 2007 Nov; 115(7):945-57. PubMed ID: 17701395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in phytates and HCl extractability of calcium, phosphorus, and iron of soaked, dehulled, cooked, and sprouted pigeon pea cultivar (UPAS-120).
    Duhan A; Khetarpaul N; Bishnoi S
    Plant Foods Hum Nutr; 2002; 57(3-4):275-84. PubMed ID: 12602935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry of black gram (Phaseolus mungo L.): a review.
    Reddy NR; Salunkhe DK; Sathe SK
    Crit Rev Food Sci Nutr; 1982; 16(1):49-114. PubMed ID: 7037311
    [No Abstract]   [Full Text] [Related]  

  • 11. Impact of Cross-Breeding of Low Phytic Acid MIPS1 and IPK1 Soybean ( Glycine max L. Merr.) Mutants on Their Contents of Inositol Phosphate Isomers.
    Goßner S; Yuan F; Zhou C; Tan Y; Shu Q; Engel KH
    J Agric Food Chem; 2019 Jan; 67(1):247-257. PubMed ID: 30541281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of the Metabolite Signature Resulting from the MIPS1 Mutation in Low Phytic Acid Soybean ( Glycine max L. Merr.) Mutants upon Cross-Breeding.
    Goßner S; Yuan F; Zhou C; Tan Y; Shu Q; Engel KH
    J Agric Food Chem; 2019 May; 67(17):5043-5052. PubMed ID: 30977368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Availability to rats of zinc from soybean seeds as affected by maturity of seed, source of dietary protein, and soluble phytate.
    Welch RM; House WA
    J Nutr; 1982 May; 112(5):879-85. PubMed ID: 7200513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of the phytate, zinc, copper, iron and manganese contents of, and zn availability from, soya-based textured-vegetable-protein meat-substitutes or meat-extenders.
    Davies NT; Reid H
    Br J Nutr; 1979 May; 41(3):579-89. PubMed ID: 572701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.
    Kumar V; Singh TR; Hada A; Jolly M; Ganapathi A; Sachdev A
    Appl Biochem Biotechnol; 2015 Oct; 177(3):689-99. PubMed ID: 26239443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolates from faba bean and soybean with lowered content of phytic acid and activity of the trypsin inhibitors.
    Borowska J; Kozłowska H
    Nahrung; 1986; 30(1):11-8. PubMed ID: 3702978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical composition of purslane (Portulaca oleracea).
    Mohamed AI; Hussein AS
    Plant Foods Hum Nutr; 1994 Jan; 45(1):1-9. PubMed ID: 8146099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Content of antinutrients and in vitro protein digestibility of the African yambean, pigeon and cowpea.
    Ene-Obong HN
    Plant Foods Hum Nutr; 1995 Oct; 48(3):225-33. PubMed ID: 8833429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in differently processed soya bean (Glycine max.) and lima bean (Phaseolus lunatus) with particular reference to their chemical composition and their mineral and some inherent anti-nutritional constituents.
    Aletor VA; Ojo OI
    Nahrung; 1989; 33(10):1009-16. PubMed ID: 2561304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral elements, lipoxygenase activity, and antioxidant capacity of okara as a byproduct in hydrothermal processing of soy milk.
    Stanojevic SP; Barac MB; Pesic MB; Zilic SM; Kresovic MM; Vucelic-Radovic BV
    J Agric Food Chem; 2014 Sep; 62(36):9017-23. PubMed ID: 25167333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.