These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 20174470)

  • 21. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI.
    Janscak P; Bickle TA
    J Mol Biol; 2000 Jan; 295(4):1089-99. PubMed ID: 10656812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic pathways of topology simplification by Type-II topoisomerases in knotted supercoiled DNA.
    Ziraldo R; Hanke A; Levene SD
    Nucleic Acids Res; 2019 Jan; 47(1):69-84. PubMed ID: 30476194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of DNA Supercoiling Induced by DNA-Protein Interactions.
    Clark DJ; Leblanc BP
    Methods Mol Biol; 2015; 1334():161-72. PubMed ID: 26404149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The mechanism of specific cleavage of supercoiled DNA by human DNA topoisomerase I: the effect of ligand structure on the catalytic step of reaction].
    Bugreev DV; Buneva VN; Nevinskiĭ GA
    Mol Biol (Mosk); 2003; 37(2):325-39. PubMed ID: 12723479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chirality of DNA trefoils: implications in intramolecular synapsis of distant DNA segments.
    Shaw SY; Wang JC
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1692-7. PubMed ID: 9050840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational analysis of the chiral action of type II DNA topoisomerases.
    Klenin K; Langowski J; Vologodskii A
    J Mol Biol; 2002 Jul; 320(2):359-67. PubMed ID: 12079392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unlinking of supercoiled DNA catenanes by type IIA topoisomerases.
    Vologodskii A
    Biophys J; 2011 Sep; 101(6):1403-11. PubMed ID: 21943421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interference between Triplex and Protein Binding to Distal Sites on Supercoiled DNA.
    Noy A; Maxwell A; Harris SA
    Biophys J; 2017 Feb; 112(3):523-531. PubMed ID: 28108011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases.
    Stone MD; Bryant Z; Crisona NJ; Smith SB; Vologodskii A; Bustamante C; Cozzarelli NR
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8654-9. PubMed ID: 12857958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition.
    Jian H; Schlick T; Vologodskii A
    J Mol Biol; 1998 Nov; 284(2):287-96. PubMed ID: 9813118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alteration of Escherichia coli topoisomerase IV conformation upon enzyme binding to positively supercoiled DNA.
    Crisona NJ; Cozzarelli NR
    J Biol Chem; 2006 Jul; 281(28):18927-32. PubMed ID: 16684778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymes that push DNA around.
    Keck JL; Berger JM
    Nat Struct Biol; 1999 Oct; 6(10):900-2. PubMed ID: 10504717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the function of eukaryotic DNA topoisomerase I: topological conditions for inactivity.
    Camilloni G; Di Martino E; Di Mauro E; Caserta M
    Proc Natl Acad Sci U S A; 1989 May; 86(9):3080-4. PubMed ID: 2541429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus.
    López-García P; Forterre P
    Mol Microbiol; 1999 Aug; 33(4):766-77. PubMed ID: 10447886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chiral Carbon Dots Mimicking Topoisomerase I To Mediate the Topological Rearrangement of Supercoiled DNA Enantioselectively.
    Li F; Li S; Guo X; Dong Y; Yao C; Liu Y; Song Y; Tan X; Gao L; Yang D
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):11087-11092. PubMed ID: 32212366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct observation of positive supercoils introduced by reverse gyrase through atomic force microscopy.
    Li D; Lv B; Wang Q; Liu Y; Zhuge Q
    Bioorg Med Chem Lett; 2017 Sep; 27(17):4086-4090. PubMed ID: 28756025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA double-crossover molecules.
    Fu TJ; Seeman NC
    Biochemistry; 1993 Apr; 32(13):3211-20. PubMed ID: 8461289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing hyper-negatively supercoiled mini-circles with nucleases and DNA binding proteins.
    Saintomé C; Delagoutte E
    PLoS One; 2018; 13(8):e0202138. PubMed ID: 30114256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus.
    Napoli A; Zivanovic Y; Bocs C; Buhler C; Rossi M; Forterre P; Ciaramella M
    Nucleic Acids Res; 2002 Jun; 30(12):2656-62. PubMed ID: 12060682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.