These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 20174632)

  • 1. ZNF9 activation of IRES-mediated translation of the human ODC mRNA is decreased in myotonic dystrophy type 2.
    Sammons MA; Antons AK; Bendjennat M; Udd B; Krahe R; Link AJ
    PLoS One; 2010 Feb; 5(2):e9301. PubMed ID: 20174632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The myotonic dystrophy type 2 protein ZNF9 is part of an ITAF complex that promotes cap-independent translation.
    Gerbasi VR; Link AJ
    Mol Cell Proteomics; 2007 Jun; 6(6):1049-58. PubMed ID: 17327219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of the rate of protein translation in patients with myotonic dystrophy 2.
    Huichalaf C; Schoser B; Schneider-Gold C; Jin B; Sarkar P; Timchenko L
    J Neurosci; 2009 Jul; 29(28):9042-9. PubMed ID: 19605641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCUG repeats reduce the rate of global protein synthesis in myotonic dystrophy type 2.
    Schneider-Gold C; Timchenko LT
    Rev Neurosci; 2010; 21(1):19-28. PubMed ID: 20458885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the [CCTG]n repeat expansion on ZNF9 expression in myotonic dystrophy type II (DM2).
    Botta A; Caldarola S; Vallo L; Bonifazi E; Fruci D; Gullotta F; Massa R; Novelli G; Loreni F
    Biochim Biophys Acta; 2006 Mar; 1762(3):329-34. PubMed ID: 16376058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms.
    Meola G; Cardani R
    Biochim Biophys Acta; 2015 Apr; 1852(4):594-606. PubMed ID: 24882752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myotonic dystrophy: emerging mechanisms for DM1 and DM2.
    Cho DH; Tapscott SJ
    Biochim Biophys Acta; 2007 Feb; 1772(2):195-204. PubMed ID: 16876389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant (CCTG)n expansion causes abnormal expression of zinc finger protein 9 (ZNF9) in myotonic dystrophy type 2.
    Raheem O; Olufemi SE; Bachinski LL; Vihola A; Sirito M; Holmlund-Hampf J; Haapasalo H; Li YP; Udd B; Krahe R
    Am J Pathol; 2010 Dec; 177(6):3025-36. PubMed ID: 20971734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae Gis2 interacts with the translation machinery and is orthogonal to myotonic dystrophy type 2 protein ZNF9.
    Sammons MA; Samir P; Link AJ
    Biochem Biophys Res Commun; 2011 Mar; 406(1):13-9. PubMed ID: 21277287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenic mechanisms of myotonic dystrophy.
    Lee JE; Cooper TA
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1281-6. PubMed ID: 19909263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The myotonic dystrophy type 2 (DM2) gene product zinc finger protein 9 (ZNF9) is associated with sarcomeres and normally localized in DM2 patients' muscles.
    Massa R; Panico MB; Caldarola S; Fusco FR; Sabatelli P; Terracciano C; Botta A; Novelli G; Bernardi G; Loreni F
    Neuropathol Appl Neurobiol; 2010 Jun; 36(4):275-84. PubMed ID: 20102514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9.
    Liquori CL; Ricker K; Moseley ML; Jacobsen JF; Kress W; Naylor SL; Day JW; Ranum LP
    Science; 2001 Aug; 293(5531):864-7. PubMed ID: 11486088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy.
    Kuyumcu-Martinez NM; Cooper TA
    Prog Mol Subcell Biol; 2006; 44():133-59. PubMed ID: 17076268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum.
    Day JW; Ricker K; Jacobsen JF; Rasmussen LJ; Dick KA; Kress W; Schneider C; Koch MC; Beilman GJ; Harrison AR; Dalton JC; Ranum LP
    Neurology; 2003 Feb; 60(4):657-64. PubMed ID: 12601109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular pathways to myotonic dystrophy].
    Ishiura S
    Nihon Rinsho; 2005 Mar; 63(3):515-21. PubMed ID: 15773354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes.
    Kim EY; Barefield DY; Vo AH; Gacita AM; Schuster EJ; Wyatt EJ; Davis JL; Dong B; Sun C; Page P; Dellefave-Castillo L; Demonbreun A; Zhang HF; McNally EM
    JCI Insight; 2019 Mar; 4(6):. PubMed ID: 30730308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical aspects, molecular pathomechanisms and management of myotonic dystrophies.
    Meola G
    Acta Myol; 2013 Dec; 32(3):154-65. PubMed ID: 24803843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative splicing facilitates internal ribosome entry on the ornithine decarboxylase mRNA.
    Pyronnet S; Pradayrol L; Sonenberg N
    Cell Mol Life Sci; 2005 Jun; 62(11):1267-74. PubMed ID: 15905964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Methods to Monitor RNA Biomarkers in Myotonic Dystrophy.
    Wojciechowska M; Sobczak K; Kozlowski P; Sedehizadeh S; Wojtkowiak-Szlachcic A; Czubak K; Markus R; Lusakowska A; Kaminska A; Brook JD
    Sci Rep; 2018 Apr; 8(1):5885. PubMed ID: 29651162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flies deficient in Muscleblind protein model features of myotonic dystrophy with altered splice forms of Z-band associated transcripts.
    Machuca-Tzili L; Thorpe H; Robinson TE; Sewry C; Brook JD
    Hum Genet; 2006 Nov; 120(4):487-99. PubMed ID: 16927100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.