These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20174659)

  • 1. Recycling energy to restore impaired ankle function during human walking.
    Collins SH; Kuo AD
    PLoS One; 2010 Feb; 5(2):e9307. PubMed ID: 20174659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.
    Caputo JM; Collins SH
    Sci Rep; 2014 Dec; 4():7213. PubMed ID: 25467389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy.
    Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.
    Herr HM; Grabowski AM
    Proc Biol Sci; 2012 Feb; 279(1728):457-64. PubMed ID: 21752817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking on uneven terrain with a powered ankle prosthesis: A preliminary assessment.
    Shultz AH; Lawson BE; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5299-302. PubMed ID: 26737487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.
    Zelik KE; Collins SH; Adamczyk PG; Segal AD; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Czerniecki JM; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):411-9. PubMed ID: 21708509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.
    Bregman DJ; Harlaar J; Meskers CG; de Groot V
    Gait Posture; 2012 Jan; 35(1):148-53. PubMed ID: 22050974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid 'ankle': insights from body centre of mass dynamics.
    Askew GN; McFarlane LA; Minetti AE; Buckley JG
    J Neuroeng Rehabil; 2019 Mar; 16(1):39. PubMed ID: 30871573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.
    Quesada RE; Caputo JM; Collins SH
    J Biomech; 2016 Oct; 49(14):3452-3459. PubMed ID: 27702444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking.
    Zelik KE; Takahashi KZ; Sawicki GS
    J Exp Biol; 2015 Mar; 218(Pt 6):876-86. PubMed ID: 25788726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified perspective on ankle push-off in human walking.
    Zelik KE; Adamczyk PG
    J Exp Biol; 2016 Dec; 219(Pt 23):3676-3683. PubMed ID: 27903626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.