These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20174688)

  • 21. Quantitative proteomics using stable isotope labeling with amino acids in cell culture.
    Harsha HC; Molina H; Pandey A
    Nat Protoc; 2008; 3(3):505-16. PubMed ID: 18323819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global in vivo terminal amino acid labeling for exploring differential expressed proteins induced by dialyzed serum cultivation.
    Xie LQ; Nie AY; Yang SJ; Zhao C; Zhang L; Yang PY; Lu HJ
    Analyst; 2014 Sep; 139(18):4497-504. PubMed ID: 25028700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.
    Nagano K; Shinkawa T; Mutoh H; Kondoh O; Morimoto S; Inomata N; Ashihara M; Ishii N; Aoki Y; Haramura M
    Proteomics; 2009 May; 9(10):2861-74. PubMed ID: 19415658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward a global characterization of the phosphoproteome in prostate cancer cells: identification of phosphoproteins in the LNCaP cell line.
    Giorgianni F; Zhao Y; Desiderio DM; Beranova-Giorgianni S
    Electrophoresis; 2007 Jun; 28(12):2027-34. PubMed ID: 17487921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphoproteome and transcriptome analyses of ErbB ligand-stimulated MCF-7 cells.
    Nagashima T; Oyama M; Kozuka-Hata H; Yumoto N; Sakaki Y; Hatakeyama M
    Cancer Genomics Proteomics; 2008; 5(3-4):161-8. PubMed ID: 18820370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inverse 15N-metabolic labeling/mass spectrometry for comparative proteomics and rapid identification of protein markers/targets.
    Wang YK; Ma Z; Quinn DF; Fu EW
    Rapid Commun Mass Spectrom; 2002; 16(14):1389-97. PubMed ID: 12112619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphoproteome analysis.
    Raggiaschi R; Gotta S; Terstappen GC
    Biosci Rep; 2005; 25(1-2):33-44. PubMed ID: 16222418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems.
    Jayapal KP; Sui S; Philp RJ; Kok YJ; Yap MG; Griffin TJ; Hu WS
    J Proteome Res; 2010 May; 9(5):2087-97. PubMed ID: 20184388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions.
    Lössner C; Warnken U; Pscherer A; Schnölzer M
    Anal Biochem; 2011 May; 412(1):123-5. PubMed ID: 21241653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Quantitative proteomics by SILAC: practicalities and perspectives for an evolving approach].
    Emadali A; Gallagher-Gambarelli M
    Med Sci (Paris); 2009 Oct; 25(10):835-42. PubMed ID: 19849986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole proteome analysis of the protozoan parasite Trypanosoma brucei using stable isotope labeling by amino acids in cell culture and mass spectrometry.
    Cirovic O; Ochsenreiter T
    Methods Mol Biol; 2014; 1188():47-55. PubMed ID: 25059603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages.
    Malik R; Lenobel R; Santamaria A; Ries A; Nigg EA; Körner R
    J Proteome Res; 2009 Oct; 8(10):4553-63. PubMed ID: 19691289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB; Mäusbacher N; Soroka J; Wandinger SK; Buchner J; Daub H
    J Proteome Res; 2012 Apr; 11(4):2397-408. PubMed ID: 22369663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Identification of phosphoproteome in mice neurons by isotope-labeling technique combining with chemiluminescence Western blotting method].
    Yao F; Li H; Yin K; He T; Wu M; Xiao B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):898-901. PubMed ID: 17899769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals protein and pathway regulation in porcine circovirus type 2 infected PK-15 cells.
    Fan H; Ye Y; Luo Y; Tong T; Yan G; Liao M
    J Proteome Res; 2012 Feb; 11(2):995-1008. PubMed ID: 22148862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid residue specific stable isotope labeling for quantitative proteomics.
    Zhu H; Pan S; Gu S; Bradbury EM; Chen X
    Rapid Commun Mass Spectrom; 2002; 16(22):2115-23. PubMed ID: 12415544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global protein quantification of mouse heart tissue based on the SILAC mouse.
    Konzer A; Ruhs A; Braun T; Krüger M
    Methods Mol Biol; 2013; 1005():39-52. PubMed ID: 23606247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast.
    Maček B; Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.top079814. PubMed ID: 28572211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards.
    Ishihama Y; Sato T; Tabata T; Miyamoto N; Sagane K; Nagasu T; Oda Y
    Nat Biotechnol; 2005 May; 23(5):617-21. PubMed ID: 15834404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global proteome analyses of SILAC-labeled skin cells.
    Sprenger A; Küttner V; Bruckner-Tuderman L; Dengjel J
    Methods Mol Biol; 2013; 961():179-91. PubMed ID: 23325643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.