BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 20174715)

  • 1. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.
    White RJ; Rowe AA; Plaxco KW
    Analyst; 2010 Mar; 135(3):589-94. PubMed ID: 20174715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry.
    White RJ; Phares N; Lubin AA; Xiao Y; Plaxco KW
    Langmuir; 2008 Sep; 24(18):10513-8. PubMed ID: 18690727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics.
    Schoukroun-Barnes LR; Wagan S; White RJ
    Anal Chem; 2014 Jan; 86(2):1131-7. PubMed ID: 24377296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J; Zhang Z; Jin H
    Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Spontaneous Alkyne-Gold Self-Assembly Chemistry as an Alternative Method for Fabricating Electrochemical Aptamer-Based Sensors.
    Olivan LA; Hand K; White RJ
    Langmuir; 2024 Jun; 40(23):12117-12123. PubMed ID: 38826127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Spectroscopy to Guide the Adaptation of Aptamers into Electrochemical Aptamer-Based Sensors.
    Wu Y; Ranallo S; Del Grosso E; Chamoro-Garcia A; Ennis HL; Milosavić N; Yang K; Kippin T; Ricci F; Stojanovic M; Plaxco KW
    Bioconjug Chem; 2023 Jan; 34(1):124-132. PubMed ID: 36044602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors.
    Liu Y; Canoura J; Alkhamis O; Xiao Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9491-9499. PubMed ID: 33448791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous Electrochemical Aptamer-Based Sensor Surfaces for Controlled Sensor Response.
    Schoukroun-Barnes LR; Glaser EP; White RJ
    Langmuir; 2015 Jun; 31(23):6563-9. PubMed ID: 26005758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Reporter - Ligand Competition to Support Signaling in the Cocaine-Binding Electrochemical Aptamer-Based Biosensor.
    Dauphin-Ducharme P; Churcher ZR; Shoara AA; Rahbarimehr E; Slavkovic S; Fontaine N; Boisvert O; Johnson PE
    Chemistry; 2023 Jun; 29(35):e202300618. PubMed ID: 36988081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y; Lai RY; Plaxco KW
    Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA; Plaxco KW
    Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer superstructure-based electrochemical biosensor for sensitive detection of ATP in rat brain with in vivo microdialysis.
    Jiang Y; Ma W; Ji W; Wei H; Mao L
    Analyst; 2019 Feb; 144(5):1711-1717. PubMed ID: 30657477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching the aptamer attachment geometry can dramatically alter the signalling and performance of electrochemical aptamer-based sensors.
    Chamorro-Garcia A; Ortega G; Mariottini D; Green J; Ricci F; Plaxco KW
    Chem Commun (Camb); 2021 Nov; 57(88):11693-11696. PubMed ID: 34673866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochromic, Closed-Bipolar Electrodes Employing Aptamer-Based Recognition for Direct Colorimetric Sensing Visualization.
    Zhang X; Lazenby RA; Wu Y; White RJ
    Anal Chem; 2019 Sep; 91(17):11467-11473. PubMed ID: 31393110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical aptamer-based sensor for the rapid and convenient measurement of L-tryptophan.
    Idili A; Gerson J; Parolo C; Kippin T; Plaxco KW
    Anal Bioanal Chem; 2019 Jul; 411(19):4629-4635. PubMed ID: 30796485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Aptamer Modification of Au Surfaces in a Microelectrode Sensor Array for Simultaneous Detection of Multiple Analytes.
    Sen D; Lazenby RA
    Anal Chem; 2023 May; 95(17):6828-6835. PubMed ID: 37071798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum.
    Jiang B; Li F; Yang C; Xie J; Xiang Y; Yuan R
    Anal Chem; 2015 Mar; 87(5):3094-8. PubMed ID: 25666563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering New Aptamer Geometries for Electrochemical Aptamer-Based Sensors.
    White RJ; Plaxco KW
    Proc SPIE Int Soc Opt Eng; 2009; 7321():732105. PubMed ID: 20436792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond.
    Asai K; Yamamoto T; Nagashima S; Ogata G; Hibino H; Einaga Y
    Analyst; 2020 Jan; 145(2):544-549. PubMed ID: 31764923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.