BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 20174715)

  • 21. Nuclease Hydrolysis Does Not Drive the Rapid Signaling Decay of DNA Aptamer-Based Electrochemical Sensors in Biological Fluids.
    Shaver A; Kundu N; Young BE; Vieira PA; Sczepanski JT; Arroyo-Currás N
    Langmuir; 2021 May; 37(17):5213-5221. PubMed ID: 33876937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors.
    Liang Y; Wu C; Figueroa-Miranda G; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2019 Nov; 144():111668. PubMed ID: 31522101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate.
    Kashefi-Kheyrabadi L; Mehrgardi MA
    Biosens Bioelectron; 2012; 37(1):94-8. PubMed ID: 22626828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing the properties of electrochemical-based DNA sensors employing different redox tags.
    Kang D; Zuo X; Yang R; Xia F; Plaxco KW; White RJ
    Anal Chem; 2009 Nov; 81(21):9109-13. PubMed ID: 19810694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid Two-Millisecond Interrogation of Electrochemical, Aptamer-Based Sensor Response Using Intermittent Pulse Amperometry.
    Santos-Cancel M; Lazenby RA; White RJ
    ACS Sens; 2018 Jun; 3(6):1203-1209. PubMed ID: 29762016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine.
    Wang C; Zhao Q
    Biosens Bioelectron; 2020 Nov; 167():112478. PubMed ID: 32810704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of surface modification strategies to create glassy carbon-supported, aptamer-based sensors for continuous molecular monitoring.
    Pellitero MA; Arroyo-Currás N
    Anal Bioanal Chem; 2022 Jul; 414(18):5627-5641. PubMed ID: 35352164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes.
    Zhang Z; Tao C; Yin J; Wang Y; Li Y
    Biosens Bioelectron; 2018 Apr; 103():39-44. PubMed ID: 29278811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Employing an Intercalated Redox Reporter in Electrochemical Aptamer-Based Biosensors to Enable Calibration-Free Molecular Measurements in Undiluted Serum.
    Zhu M; Li S; Li H; Li H; Xia F
    Anal Chem; 2020 Sep; 92(18):12437-12441. PubMed ID: 32786211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.
    Wang D; Xiao X; Xu S; Liu Y; Li Y
    Biosens Bioelectron; 2018 Jan; 99():431-437. PubMed ID: 28810234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microscale, Electrochemical, Aptamer-Based Sensors for Enhanced Small-Molecule Detection at Millisecond Time Scales.
    Kumakli H; Baldwin M; Abeykoon SW; White RJ
    ACS Sens; 2023 Dec; 8(12):4521-4530. PubMed ID: 38104257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification.
    Lee CY; Wu KY; Su HL; Hung HY; Hsieh YZ
    Biosens Bioelectron; 2013 Jan; 39(1):133-8. PubMed ID: 22883750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Achieving reproducible performance of electrochemical, folding aptamer-based sensors on microelectrodes: challenges and prospects.
    Liu J; Wagan S; Dávila Morris M; Taylor J; White RJ
    Anal Chem; 2014 Nov; 86(22):11417-24. PubMed ID: 25337781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA; Hunt BV; White RJ; Plaxco KW
    Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Biosensors with Dual Programmable Dynamic Ranges.
    Wei B; Zhang J; Ou X; Lou X; Xia F; Vallée-Bélisle A
    Anal Chem; 2018 Feb; 90(3):1506-1510. PubMed ID: 29300471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subsecond-Resolved Molecular Measurements in the Living Body Using Chronoamperometrically Interrogated Aptamer-Based Sensors.
    Arroyo-Currás N; Dauphin-Ducharme P; Ortega G; Ploense KL; Kippin TE; Plaxco KW
    ACS Sens; 2018 Feb; 3(2):360-366. PubMed ID: 29124939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical selection of a DNA aptamer, and an impedimetric method for determination of the dedicator of cytokinesis 8 by self-assembly of a thiolated aptamer on a gold electrode.
    Eissa S; Siddiqua A; Chinnappan R; Zourob M
    Mikrochim Acta; 2019 Nov; 186(12):828. PubMed ID: 31754797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct, Real-Time Detection of Adenosine Triphosphate Release from Astrocytes in Three-Dimensional Culture Using an Integrated Electrochemical Aptamer-Based Sensor.
    Santos-Cancel M; Simpson LW; Leach JB; White RJ
    ACS Chem Neurosci; 2019 Apr; 10(4):2070-2079. PubMed ID: 30754968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finding the Lost Dissociation Constant of Electrochemical Aptamer-Based Biosensors.
    Rahbarimehr E; Chao HP; Churcher ZR; Slavkovic S; Kaiyum YA; Johnson PE; Dauphin-Ducharme P
    Anal Chem; 2023 Jan; 95(4):2229-2237. PubMed ID: 36638814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the Signaling of Electrochemical Aptamer-Based Sensors: Collision- and Folding-Based Mechanisms.
    Xiao Y; Uzawa T; White RJ; Demartini D; Plaxco KW
    Electroanalysis; 2009 Jun; 21(11):1267-1271. PubMed ID: 20436787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.