BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20175484)

  • 1. Quantitative analysis of breast parenchymal patterns using 3D fibroglandular tissues segmented based on MRI.
    Nie K; Chang D; Chen JH; Hsu CC; Nalcioglu O; Su MY
    Med Phys; 2010 Jan; 37(1):217-26. PubMed ID: 20175484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort.
    Klifa C; Carballido-Gamio J; Wilmes L; Laprie A; Shepherd J; Gibbs J; Fan B; Noworolski S; Hylton N
    Magn Reson Imaging; 2010 Jan; 28(1):8-15. PubMed ID: 19631485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images.
    Wei J; Chan HP; Helvie MA; Roubidoux MA; Sahiner B; Hadjiiski LM; Zhou C; Paquerault S; Chenevert T; Goodsitt MM
    Med Phys; 2004 Apr; 31(4):933-42. PubMed ID: 15125012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of breast density: an adaptive moment preserving method for segmentation of fibroglandular tissue in breast magnetic resonance images.
    Wei CH; Li Y; Huang PJ; Gwo CY; Harms SE
    Eur J Radiol; 2012 Apr; 81(4):e618-24. PubMed ID: 22266417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI.
    Nie K; Chen JH; Yu HJ; Chu Y; Nalcioglu O; Su MY
    Acad Radiol; 2008 Dec; 15(12):1513-25. PubMed ID: 19000868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atlas-based probabilistic fibroglandular tissue segmentation in breast MRI.
    Wu S; Weinstein S; Kontos D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):437-45. PubMed ID: 23286078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement.
    Newell D; Nie K; Chen JH; Hsu CC; Yu HJ; Nalcioglu O; Su MY
    Eur Radiol; 2010 Apr; 20(4):771-81. PubMed ID: 19789878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial shrinkage/expansion patterns between breast density measured in two MRI scans evaluated by non-rigid registration.
    Lin M; Chen JH; Mehta RS; Bahri S; Chan S; Nalcioglu O; Su MY
    Phys Med Biol; 2011 Sep; 56(18):5865-75. PubMed ID: 21852724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI.
    Lee SH; Kim JH; Cho N; Park JS; Yang Z; Jung YS; Moon WK
    Med Phys; 2010 Aug; 37(8):3940-56. PubMed ID: 20879557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of skin removal on quantitative measurement of breast density using MRI.
    Nie K; Chang D; Chen JH; Shih TC; Hsu CC; Nalcioglu O; Su MY
    Med Phys; 2010 Jan; 37(1):227-33. PubMed ID: 20175485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI.
    Nie K; Chen JH; Chan S; Chau MK; Yu HJ; Bahri S; Tseng T; Nalcioglu O; Su MY
    Med Phys; 2008 Dec; 35(12):5253-62. PubMed ID: 19175084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment.
    Zheng Y; Keller BM; Ray S; Wang Y; Conant EF; Gee JC; Kontos D
    Med Phys; 2015 Jul; 42(7):4149-60. PubMed ID: 26133615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast segmentation and density estimation in breast MRI: a fully automatic framework.
    Gubern-Mérida A; Kallenberg M; Mann RM; Martí R; Karssemeijer N
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):349-57. PubMed ID: 25561456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis.
    Wang TC; Huang YH; Huang CS; Chen JH; Huang GY; Chang YC; Chang RF
    Magn Reson Imaging; 2014 Apr; 32(3):197-205. PubMed ID: 24439361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volumetric breast density estimation from full-field digital mammograms.
    van Engeland S; Snoeren PR; Huisman H; Boetes C; Karssemeijer N
    IEEE Trans Med Imaging; 2006 Mar; 25(3):273-82. PubMed ID: 16524084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics.
    Chen W; Giger ML; Lan L; Bick U
    Med Phys; 2004 May; 31(5):1076-82. PubMed ID: 15191295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammographic density, MRI background parenchymal enhancement and breast cancer risk.
    Pike MC; Pearce CL
    Ann Oncol; 2013 Nov; 24 Suppl 8(Suppl 8):viii37-viii41. PubMed ID: 24131968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of background parenchymal enhancement and fibroglandular density at breast magnetic resonance imaging between BRCA gene mutation carriers and non-carriers.
    Grubstein A; Rapson Y; Benzaquen O; Rozenblatt S; Gadiel I; Atar E; Yerushalmi R; Cohen MJ
    Clin Imaging; 2018; 51():347-351. PubMed ID: 29982132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous multiple image registration method for T1 estimation in breast MRI images.
    Lo JL; Brady M; Moore N
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):865-72. PubMed ID: 17354972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance.
    Goldberg BD; Iftimia NV; Bressner JE; Pitman MB; Halpern E; Bouma BE; Tearney GJ
    J Biomed Opt; 2008; 13(1):014014. PubMed ID: 18315372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.