These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 20175510)
1. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. Kolosnjaj-Tabi J; Hartman KB; Boudjemaa S; Ananta JS; Morgant G; Szwarc H; Wilson LJ; Moussa F ACS Nano; 2010 Mar; 4(3):1481-92. PubMed ID: 20175510 [TBL] [Abstract][Full Text] [Related]
2. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related]
3. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold. Kocharova N; AƤritalo T; Leiro J; Kankare J; Lukkari J Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. Allen BL; Kotchey GP; Chen Y; Yanamala NV; Klein-Seetharaman J; Kagan VE; Star A J Am Chem Soc; 2009 Dec; 131(47):17194-205. PubMed ID: 19891488 [TBL] [Abstract][Full Text] [Related]
6. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro. Meng J; Song L; Meng J; Kong H; Zhu G; Wang C; Xu L; Xie S; Xu H J Biomed Mater Res A; 2006 Nov; 79(2):298-306. PubMed ID: 16817220 [TBL] [Abstract][Full Text] [Related]
7. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions. Crouzier T; Nimmagadda A; Nollert MU; McFetridge PS Langmuir; 2008 Nov; 24(22):13173-81. PubMed ID: 18947245 [TBL] [Abstract][Full Text] [Related]
8. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Zhang LW; Zeng L; Barron AR; Monteiro-Riviere NA Int J Toxicol; 2007; 26(2):103-13. PubMed ID: 17454250 [TBL] [Abstract][Full Text] [Related]
9. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Sayes CM; Liang F; Hudson JL; Mendez J; Guo W; Beach JM; Moore VC; Doyle CD; West JL; Billups WE; Ausman KD; Colvin VL Toxicol Lett; 2006 Feb; 161(2):135-42. PubMed ID: 16229976 [TBL] [Abstract][Full Text] [Related]
10. Coating single-walled carbon nanotubes with phospholipids. Wu Y; Hudson JS; Lu Q; Moore JM; Mount AS; Rao AM; Alexov E; Ke PC J Phys Chem B; 2006 Feb; 110(6):2475-8. PubMed ID: 16471843 [TBL] [Abstract][Full Text] [Related]
11. Short-term splenic impact of single-strand DNA functionalized multi-walled carbon nanotubes intraperitoneally injected in rats. Clichici S; Biris AR; Catoi C; Filip A; Tabaran F J Appl Toxicol; 2014 Apr; 34(4):332-44. PubMed ID: 23677818 [TBL] [Abstract][Full Text] [Related]
12. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. Min YS; Bae EJ; Oh BS; Kang D; Park W J Am Chem Soc; 2005 Sep; 127(36):12498-9. PubMed ID: 16144391 [TBL] [Abstract][Full Text] [Related]
13. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Tong H; McGee JK; Saxena RK; Kodavanti UP; Devlin RB; Gilmour MI Toxicol Appl Pharmacol; 2009 Sep; 239(3):224-32. PubMed ID: 19481103 [TBL] [Abstract][Full Text] [Related]
14. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
15. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Porter DW; Hubbs AF; Mercer RR; Wu N; Wolfarth MG; Sriram K; Leonard S; Battelli L; Schwegler-Berry D; Friend S; Andrew M; Chen BT; Tsuruoka S; Endo M; Castranova V Toxicology; 2010 Mar; 269(2-3):136-47. PubMed ID: 19857541 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial effects of carbon nanotubes: size does matter! Kang S; Herzberg M; Rodrigues DF; Elimelech M Langmuir; 2008 Jun; 24(13):6409-13. PubMed ID: 18512881 [TBL] [Abstract][Full Text] [Related]
17. [The biocompatibility of carbon nanotubes]. Sun L; Zhang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):742-6. PubMed ID: 18693469 [TBL] [Abstract][Full Text] [Related]
18. Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Arias LR; Yang L Langmuir; 2009 Mar; 25(5):3003-12. PubMed ID: 19437709 [TBL] [Abstract][Full Text] [Related]
19. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Johnston HJ; Hutchison GR; Christensen FM; Peters S; Hankin S; Aschberger K; Stone V Nanotoxicology; 2010 Jun; 4(2):207-46. PubMed ID: 20795897 [TBL] [Abstract][Full Text] [Related]
20. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Yang ST; Wang X; Jia G; Gu Y; Wang T; Nie H; Ge C; Wang H; Liu Y Toxicol Lett; 2008 Oct; 181(3):182-9. PubMed ID: 18760340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]