BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 20175646)

  • 1. Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters.
    Kusuhara H; Sugiyama Y
    Drug Metab Rev; 2010 Aug; 42(3):539-50. PubMed ID: 20175646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion.
    Lai Y
    Expert Opin Drug Metab Toxicol; 2009 Oct; 5(10):1175-87. PubMed ID: 19611403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of the OATP hepatic uptake transport protein family in DMPK sciences: from obscure liver transporters to key determinants of hepatobiliary clearance.
    Fenner KS; Jones HM; Ullah M; Kempshall S; Dickins M; Lai Y; Morgan P; Barton HA
    Xenobiotica; 2012 Jan; 42(1):28-45. PubMed ID: 22077101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transporters as a determinant of drug clearance and tissue distribution.
    Shitara Y; Horie T; Sugiyama Y
    Eur J Pharm Sci; 2006 Apr; 27(5):425-46. PubMed ID: 16488580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Drug membrane transporters in the liver: regulation of their expression and activity].
    Fardel O; Payen L; Sparfel L; Vernhet L; Lecureur V
    Ann Pharm Fr; 2002 Nov; 60(6):380-5. PubMed ID: 12514503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of the hepatobiliary transport of a new prostaglandin receptor agonist.
    Imawaka H; Sugiyama Y
    J Pharmacol Exp Ther; 1998 Mar; 284(3):949-57. PubMed ID: 9495854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of biliary excretion of methotrexate by probenecid in rats: quantitative prediction of interaction from in vitro data.
    Ueda K; Kato Y; Komatsu K; Sugiyama Y
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1036-43. PubMed ID: 11356926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of renal failure on drug transport and metabolism.
    Sun H; Frassetto L; Benet LZ
    Pharmacol Ther; 2006 Jan; 109(1-2):1-11. PubMed ID: 16085315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of hepatic transport of drugs: implications for cholestatic drug reactions.
    Bohan A; Boyer JL
    Semin Liver Dis; 2002; 22(2):123-36. PubMed ID: 12016544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of hepatic uptake transporters on pharmacokinetics and drug-drug interactions: use of assays and models for decision making in the pharmaceutical industry.
    Soars MG; Webborn PJ; Riley RJ
    Mol Pharm; 2009; 6(6):1662-77. PubMed ID: 19402709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of the multispecific organic anion transporter in hepatobiliary excretion of glutathione S-conjugates, drugs and other xenobiotics.
    Makowski P; Pikuła S
    Pol J Pharmacol; 1997; 49(6):387-94. PubMed ID: 9566041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transporters and drug therapy: implications for drug disposition and disease.
    Ho RH; Kim RB
    Clin Pharmacol Ther; 2005 Sep; 78(3):260-77. PubMed ID: 16153397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of tc-99m mebrofenin as a clinical probe to assess altered hepatobiliary transport: integration of in vitro, pharmacokinetic modeling, and simulation studies.
    Ghibellini G; Leslie EM; Pollack GM; Brouwer KL
    Pharm Res; 2008 Aug; 25(8):1851-60. PubMed ID: 18509604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier-mediated hepatic uptake of quinolone antibiotics in the rat.
    Sasabe H; Terasaki T; Tsuji A; Sugiyama Y
    J Pharmacol Exp Ther; 1997 Jul; 282(1):162-71. PubMed ID: 9223551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data.
    Jones HM; Barton HA; Lai Y; Bi YA; Kimoto E; Kempshall S; Tate SC; El-Kattan A; Houston JB; Galetin A; Fenner KS
    Drug Metab Dispos; 2012 May; 40(5):1007-17. PubMed ID: 22344703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions.
    Camenisch G; Umehara K
    Biopharm Drug Dispos; 2012 May; 33(4):179-94. PubMed ID: 22407504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated approach to model hepatic drug clearance.
    Liu L; Pang KS
    Eur J Pharm Sci; 2006 Nov; 29(3-4):215-30. PubMed ID: 16806855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When Does the Rate-Determining Step in the Hepatic Clearance of a Drug Switch from Sinusoidal Uptake to All Hepatobiliary Clearances? Implications for Predicting Drug-Drug Interactions.
    Patilea-Vrana GI; Unadkat JD
    Drug Metab Dispos; 2018 Nov; 46(11):1487-1496. PubMed ID: 30115647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic modeling of hepatic transport from cells to whole body: application to napsagatran and fexofenadine.
    Poirier A; Funk C; Scherrmann JM; Lavé T
    Mol Pharm; 2009; 6(6):1716-33. PubMed ID: 19739673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-mediated hepatobiliary transport of a novel antifolate, N-[4-[(2,4-dianninopteridine-6-yl)methyl]-3,4-dihydro-2H-1,4-benzothiazin-7-yl]carbonyl-L-homoglutamic acid, in rats.
    Han YH; Kato Y; Watanabe Y; Terao K; Asoh Y; Sugiyama Y
    Drug Metab Dispos; 2001 Apr; 29(4 Pt 1):394-400. PubMed ID: 11259322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.