BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 20175913)

  • 21. Excessive osteoclast activation by osteoblast paracrine factor RANKL is a major cause of the abnormal long bone phenotype in Apert syndrome model mice.
    Shin HR; Kim BS; Kim HJ; Yoon H; Kim WJ; Choi JY; Ryoo HM
    J Cell Physiol; 2022 Apr; 237(4):2155-2168. PubMed ID: 35048384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Ser252Trp mutation in fibroblast growth factor receptor 2 (FGFR2) mimicking human Apert syndrome reveals an essential role for FGF signaling in the regulation of endochondral bone formation.
    Chen P; Zhang L; Weng T; Zhang S; Sun S; Chang M; Li Y; Zhang B; Zhang L
    PLoS One; 2014; 9(1):e87311. PubMed ID: 24489893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues.
    Heuzé Y; Singh N; Basilico C; Jabs EW; Holmes G; Richtsmeier JT
    Bone; 2014 Jun; 63():101-9. PubMed ID: 24632501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice.
    Wang Y; Zhou X; Oberoi K; Phelps R; Couwenhoven R; Sun M; Rezza A; Holmes G; Percival CJ; Friedenthal J; Krejci P; Richtsmeier JT; Huso DL; Rendl M; Jabs EW
    J Clin Invest; 2012 Jun; 122(6):2153-64. PubMed ID: 22585574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mouse models of Apert syndrome.
    Holmes G
    Childs Nerv Syst; 2012 Sep; 28(9):1505-10. PubMed ID: 22872267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse.
    Wang Y; Xiao R; Yang F; Karim BO; Iacovelli AJ; Cai J; Lerner CP; Richtsmeier JT; Leszl JM; Hill CA; Yu K; Ornitz DM; Elisseeff J; Huso DL; Jabs EW
    Development; 2005 Aug; 132(15):3537-48. PubMed ID: 15975938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis.
    Shukla V; Coumoul X; Wang RH; Kim HS; Deng CX
    Nat Genet; 2007 Sep; 39(9):1145-50. PubMed ID: 17694057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome.
    Holmes G; Basilico C
    Dev Biol; 2012 Aug; 368(2):283-93. PubMed ID: 22664175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling.
    Miraoui H; Oudina K; Petite H; Tanimoto Y; Moriyama K; Marie PJ
    J Biol Chem; 2009 Feb; 284(8):4897-904. PubMed ID: 19117954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice.
    Motch Perrine SM; Wu M; Stephens NB; Kriti D; van Bakel H; Jabs EW; Richtsmeier JT
    Dis Model Mech; 2019 May; 12(5):. PubMed ID: 31064775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FGFR2 mutation confers a less drastic gain of function in mesenchymal stem cells than in fibroblasts.
    Yeh E; Atique R; Ishiy FA; Fanganiello RD; Alonso N; Matushita H; da Rocha KM; Passos-Bueno MR
    Stem Cell Rev Rep; 2012 Sep; 8(3):685-95. PubMed ID: 22048896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facial suture synostosis of newborn Fgfr1(P250R/+) and Fgfr2(S252W/+) mouse models of Pfeiffer and Apert syndromes.
    Purushothaman R; Cox TC; Maga AM; Cunningham ML
    Birth Defects Res A Clin Mol Teratol; 2011 Jul; 91(7):603-9. PubMed ID: 21538817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postnatal brain and skull growth in an Apert syndrome mouse model.
    Hill CA; Martínez-Abadías N; Motch SM; Austin JR; Wang Y; Jabs EW; Richtsmeier JT; Aldridge K
    Am J Med Genet A; 2013 Apr; 161A(4):745-57. PubMed ID: 23495236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of FGFR Signaling on Cell Proliferation and Differentiation of Apert Dental Cells.
    Lu C; Huguley S; Cui C; Cabaniss LB; Waite PD; Sarver DM; Mamaeva OA; MacDougall M
    Cells Tissues Organs; 2016; 201(1):26-37. PubMed ID: 26613250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The primary site of the acrocephalic feature in Apert Syndrome is a dwarf cranial base with accelerated chondrocytic differentiation due to aberrant activation of the FGFR2 signaling.
    Nagata M; Nuckolls GH; Wang X; Shum L; Seki Y; Kawase T; Takahashi K; Nonaka K; Takahashi I; Noman AA; Suzuki K; Slavkin HC
    Bone; 2011 Apr; 48(4):847-56. PubMed ID: 21129456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genotype-Phenotype Correlation of Tracheal Cartilaginous Sleeves and Fgfr2 Mutations in Mice.
    Lam AS; Liu CC; Deutsch GH; Rivera J; Perkins JA; Holmes G; Jabs EW; Cunningham ML; Dahl JP
    Laryngoscope; 2021 Apr; 131(4):E1349-E1356. PubMed ID: 32886384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presence of the Apert canonical S252W FGFR2 mutation in a patient without severe syndactyly.
    Passos-Bueno MR; Richieri-Costa A; Sertié AL; Kneppers A
    J Med Genet; 1998 Aug; 35(8):677-9. PubMed ID: 9719378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exosome-mediated small interfering RNA delivery inhibits aberrant osteoblast differentiation in Apert syndrome model mice.
    Myo AC; Kobayashi Y; Niki Y; Kamimoto H; Moriyama K
    Arch Oral Biol; 2023 Sep; 153():105753. PubMed ID: 37348363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maldevelopment of the submandibular gland in a mouse model of apert syndrome.
    Yamaji K; Morita J; Watanabe T; Gunjigake K; Nakatomi M; Shiga M; Ono K; Moriyama K; Kawamoto T
    Dev Dyn; 2018 Nov; 247(11):1175-1185. PubMed ID: 30251381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adeno-Associated Virus-Mediated RNAi against Mutant Alleles Attenuates Abnormal Calvarial Phenotypes in an Apert Syndrome Mouse Model.
    Luo F; Xie Y; Wang Z; Huang J; Tan Q; Sun X; Li F; Li C; Liu M; Zhang D; Xu M; Su N; Ni Z; Jiang W; Chang J; Chen H; Chen S; Xu X; Deng C; Wang Z; Du X; Chen L
    Mol Ther Nucleic Acids; 2018 Dec; 13():291-302. PubMed ID: 30321816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.