These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
655 related articles for article (PubMed ID: 20175987)
1. Redox-optimized ROS balance: a unifying hypothesis. Aon MA; Cortassa S; O'Rourke B Biochim Biophys Acta; 2010; 1797(6-7):865-77. PubMed ID: 20175987 [TBL] [Abstract][Full Text] [Related]
2. Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS. Cortassa S; O'Rourke B; Aon MA Biochim Biophys Acta; 2014 Feb; 1837(2):287-95. PubMed ID: 24269780 [TBL] [Abstract][Full Text] [Related]
3. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Korge P; Calmettes G; Weiss JN Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705 [TBL] [Abstract][Full Text] [Related]
4. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Kembro JM; Aon MA; Winslow RL; O'Rourke B; Cortassa S Biophys J; 2013 Jan; 104(2):332-43. PubMed ID: 23442855 [TBL] [Abstract][Full Text] [Related]
5. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria. Mailloux RJ; Treberg JR Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874 [TBL] [Abstract][Full Text] [Related]
6. Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress. Zhou L; Aon MA; Liu T; O'Rourke B J Mol Cell Cardiol; 2011 Nov; 51(5):632-9. PubMed ID: 21645518 [TBL] [Abstract][Full Text] [Related]
7. A mitochondrial oscillator dependent on reactive oxygen species. Cortassa S; Aon MA; Winslow RL; O'Rourke B Biophys J; 2004 Sep; 87(3):2060-73. PubMed ID: 15345581 [TBL] [Abstract][Full Text] [Related]
8. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes. Tocchetti CG; Stanley BA; Sivakumaran V; Bedja D; O'Rourke B; Paolocci N; Cortassa S; Aon MA Clin Sci (Lond); 2015 Oct; 129(7):561-74. PubMed ID: 26186741 [TBL] [Abstract][Full Text] [Related]
9. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. Aon MA; Cortassa S; Maack C; O'Rourke B J Biol Chem; 2007 Jul; 282(30):21889-900. PubMed ID: 17540766 [TBL] [Abstract][Full Text] [Related]
10. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Jong CJ; Azuma J; Schaffer S Amino Acids; 2012 Jun; 42(6):2223-32. PubMed ID: 21691752 [TBL] [Abstract][Full Text] [Related]
11. ROS scavenging before 27 degrees C ischemia protects hearts and reduces mitochondrial ROS, Ca2+ overload, and changes in redox state. Camara AK; Aldakkak M; Heisner JS; Rhodes SS; Riess ML; An J; Heinen A; Stowe DF Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2021-31. PubMed ID: 17287367 [TBL] [Abstract][Full Text] [Related]
12. Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. Slodzinski MK; Aon MA; O'Rourke B J Mol Cell Cardiol; 2008 Nov; 45(5):650-60. PubMed ID: 18760283 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study. Cortassa S; Sollott SJ; Aon MA PLoS Comput Biol; 2017 Jun; 13(6):e1005588. PubMed ID: 28598967 [TBL] [Abstract][Full Text] [Related]