BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20175992)

  • 41. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets.
    Jagelská EB; Pivonková H; Fojta M; Brázda V
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1409-14. PubMed ID: 20026061
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of the effects of intercalating and non-intercalating drugs on DNA structure.
    Montecucco A; Spadari S; Focher F; Pedrali-Noy G; Sala C; Palù G; Ciarrocchi G
    Biochem Pharmacol; 1988 May; 37(9):1853-4. PubMed ID: 3163926
    [No Abstract]   [Full Text] [Related]  

  • 43. The DNA binding activity of wild type p53 is modulated by blocking its various antigenic epitopes.
    Wolkowicz R; Elkind NB; Ronen D; Rotter V
    Oncogene; 1995 Mar; 10(6):1167-74. PubMed ID: 7535417
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro.
    Hainaut P; Milner J
    Cancer Res; 1993 Oct; 53(19):4469-73. PubMed ID: 8402615
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sequence-specific interaction of a conformational domain of p53 with DNA.
    Srinivasan R; Roth JA; Maxwell SA
    Cancer Res; 1993 Nov; 53(22):5361-4. PubMed ID: 8221671
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics.
    Bentin T; Nielsen PE
    Biochemistry; 1996 Jul; 35(27):8863-9. PubMed ID: 8688422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-resolved chloroquine-induced relaxation of supercoiled plasmid DNA.
    Mahut M; Leitner M; Ebner A; Lämmerhofer M; Hinterdorfer P; Lindner W
    Anal Bioanal Chem; 2012 Jan; 402(1):373-80. PubMed ID: 21766217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of Oxidation Agents and Metal Ions on Binding of p53 to Supercoiled DNA.
    Fojta M; Brazdova M; Cernocka H; Pecinka P; Brazda V; Palecek J; Jagelska E; Vojtesek B; Pospisilova S; Subramaniam V; Jovin TM; Palecek E
    J Biomol Struct Dyn; 2000; 17 Suppl 1():177-83. PubMed ID: 22607421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Torsional rigidity of positively and negatively supercoiled DNA.
    Selvin PR; Cook DN; Pon NG; Bauer WR; Klein MP; Hearst JE
    Science; 1992 Jan; 255(5040):82-5. PubMed ID: 1553534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The central region of BRCA1 binds preferentially to supercoiled DNA.
    Brázda V; Jagelska EB; Liao JC; Arrowsmith CH
    J Biomol Struct Dyn; 2009 Aug; 27(1):97-104. PubMed ID: 19492866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alteration of superhelical state of DNA by aluminium (Al).
    Rao KS; Rao BS; Vishnuvardhan D; Prasad KV
    Biochim Biophys Acta; 1993 Feb; 1172(1-2):17-20. PubMed ID: 8439556
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of DNA supercoiling induced by DNA-protein interactions.
    Clark DJ; Leblanc B
    Methods Mol Biol; 2009; 543():523-35. PubMed ID: 19378184
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determining DNA supercoiling enthalpy by isothermal titration calorimetry.
    Xu X; Zhi X; Leng F
    Biochimie; 2012 Dec; 94(12):2665-72. PubMed ID: 22940593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. First evidence for helical transitions in supercoiled DNA by amyloid Beta Peptide (1-42) and aluminum: a new insight in understanding Alzheimer's disease.
    Hegde ML; Anitha S; Latha KS; Mustak MS; Stein R; Ravid R; Rao KS
    J Mol Neurosci; 2004; 22(1-2):19-31. PubMed ID: 14742907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of ethidium binding and superhelix density on the apparent supercoiling free energy and torsion constant of pBR322 DNA.
    Naimushin AN; Clendenning JB; Kim US; Song L; Fujimoto BS; Stewart DW; Schurr JM
    Biophys Chem; 1994 Nov; 52(3):219-26. PubMed ID: 7999973
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescence polarization studies of the binding of BMS 181176 to DNA.
    Krishnan BS; Moore ME; Lavoie CP; Long BH; Dalterio RA; Wong HS; Rosenberg IE
    J Biomol Struct Dyn; 1994 Dec; 12(3):625-36. PubMed ID: 7727062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical and biophysical properties of positively supercoiled DNA.
    Liu Y; Berrido AM; Hua ZC; Tse-Dinh YC; Leng F
    Biophys Chem; 2017 Nov; 230():68-73. PubMed ID: 28887044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of chloroquine with linear and supercoiled DNAs. Effect on the torsional dynamics, rigidity, and twist energy parameter.
    Wu PG; Song L; Clendenning JB; Fujimoto BS; Benight AS; Schurr JM
    Biochemistry; 1988 Oct; 27(21):8128-44. PubMed ID: 3233199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Assessment of the distribution of nucleic acid intercalators in yeast cells by the pseudospectral image analysis].
    Puchkov EO; McCarren M
    Biofizika; 2011; 56(4):661-7. PubMed ID: 21950068
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for cross-linking DNA by bis-intercalators with rigid and extended linkers is provided by knotting and catenation.
    Annan NK; Cook PR; Mullins ST; Lowe G
    Nucleic Acids Res; 1992 Mar; 20(5):983-90. PubMed ID: 1549510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.