BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

728 related articles for article (PubMed ID: 20176096)

  • 1. Roller compaction of moist pharmaceutical powders.
    Wu CY; Hung WL; Miguélez-Morán AM; Gururajan B; Seville JP
    Int J Pharm; 2010 May; 391(1-2):90-7. PubMed ID: 20176096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lubrication on density distributions of roller compacted ribbons.
    Miguélez-Morán AM; Wu CY; Seville JP
    Int J Pharm; 2008 Oct; 362(1-2):52-9. PubMed ID: 18602976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2301-13. PubMed ID: 16136560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of density distributions in roller-compacted ribbons using micro-indentation and X-ray micro-computed tomography.
    Miguélez-Morán AM; Wu CY; Dong H; Seville JP
    Eur J Pharm Biopharm; 2009 May; 72(1):173-82. PubMed ID: 19130881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.
    Yu S; Gururajan B; Reynolds G; Roberts R; Adams MJ; Wu CY
    Int J Pharm; 2012 May; 428(1-2):39-47. PubMed ID: 22402475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving feeding powder distribution to the compaction zone in the roller compaction.
    Yu M; Omar C; Schmidt A; Litster JD; Salman AD
    Eur J Pharm Biopharm; 2018 Jul; 128():57-68. PubMed ID: 29678732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data.
    Nesarikar VV; Patel C; Early W; Vatsaraj N; Sprockel O; Jerzweski R
    Int J Pharm; 2012 Oct; 436(1-2):486-507. PubMed ID: 22721851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roller compaction: Effect of relative humidity of lactose powder.
    Omar CS; Dhenge RM; Palzer S; Hounslow MJ; Salman AD
    Eur J Pharm Biopharm; 2016 Sep; 106():26-37. PubMed ID: 26940133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial die-wall pressure as a reliable tool for studying the effect of powder water activity on high speed tableting.
    Abdel-Hamid S; Betz G
    Int J Pharm; 2011 Jun; 411(1-2):152-61. PubMed ID: 21497644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation into the impact of magnesium stearate on powder feeding during roller compaction.
    Dawes J; Gamble JF; Greenwood R; Robbins P; Tobyn M
    Drug Dev Ind Pharm; 2012 Jan; 38(1):111-22. PubMed ID: 21810064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of moisture and magnesium stearate concentration on flow properties of cohesive granular materials.
    Faqih AM; Mehrotra A; Hammond SV; Muzzio FJ
    Int J Pharm; 2007 May; 336(2):338-45. PubMed ID: 17289312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.
    Omar CS; Dhenge RM; Osborne JD; Althaus TO; Palzer S; Hounslow MJ; Salman AD
    Int J Pharm; 2015 Dec; 496(1):63-74. PubMed ID: 26117279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roller compactor: The effect of mechanical properties of primary particles.
    Al-Asady RB; Osborne JD; Hounslow MJ; Salman AD
    Int J Pharm; 2015 Dec; 496(1):124-36. PubMed ID: 26024822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of feeding guiders to improve the powder distribution in the two scales of roller compactors.
    Yu M; Weidemann M; Omar CS; Schmidt A; Litster JD; Salman AD
    Int J Pharm; 2020 Jan; 573():118815. PubMed ID: 31751637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating and modifying Johanson's rolling model to improve its predictability.
    Bi M; Alvarez-Nunez F; Alvarez F
    J Pharm Sci; 2014 Jul; 103(7):2062-2071. PubMed ID: 24840775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental investigation of temperature rise during compaction of pharmaceutical powders.
    Krok A; Mirtic A; Reynolds GK; Schiano S; Roberts R; Wu CY
    Int J Pharm; 2016 Nov; 513(1-2):97-108. PubMed ID: 27601333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.
    Hadzović E; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2010 Aug; 396(1-2):53-62. PubMed ID: 20600735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.