BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 20176146)

  • 21. Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro.
    Martino F; Kueng S; Robinson P; Tsai-Pflugfelder M; van Leeuwen F; Ziegler M; Cubizolles F; Cockell MM; Rhodes D; Gasser SM
    Mol Cell; 2009 Feb; 33(3):323-34. PubMed ID: 19217406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulations of SIR-nucleosome interactions of reconstructed yeast silent pre-heterochromatin by O-acetyl-ADP-ribose and magnesium.
    Tung SY; Wang SH; Lee SP; Tsai SP; Shen HH; Chen FJ; Wu YY; Hsiao SP; Liou GG
    Mol Biol Cell; 2017 Feb; 28(3):381-386. PubMed ID: 27932495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Splicing regulates NAD metabolite binding to histone macroH2A.
    Kustatscher G; Hothorn M; Pugieux C; Scheffzek K; Ladurner AG
    Nat Struct Mol Biol; 2005 Jul; 12(7):624-5. PubMed ID: 15965484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
    Jackson MD; Schmidt MT; Oppenheimer NJ; Denu JM
    J Biol Chem; 2003 Dec; 278(51):50985-98. PubMed ID: 14522996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry.
    Sauve AA; Schramm VL
    Biochemistry; 2003 Aug; 42(31):9249-56. PubMed ID: 12899610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolite of SIR2 reaction modulates TRPM2 ion channel.
    Grubisha O; Rafty LA; Takanishi CL; Xu X; Tong L; Perraud AL; Scharenberg AM; Denu JM
    J Biol Chem; 2006 May; 281(20):14057-65. PubMed ID: 16565078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases.
    Smith BC; Denu JM
    J Biol Chem; 2007 Dec; 282(51):37256-65. PubMed ID: 17951578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine.
    Smith BC; Denu JM
    Biochemistry; 2006 Jan; 45(1):272-82. PubMed ID: 16388603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.
    Bitterman KJ; Anderson RM; Cohen HY; Latorre-Esteves M; Sinclair DA
    J Biol Chem; 2002 Nov; 277(47):45099-107. PubMed ID: 12297502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions.
    Sauve AA; Celic I; Avalos J; Deng H; Boeke JD; Schramm VL
    Biochemistry; 2001 Dec; 40(51):15456-63. PubMed ID: 11747420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases.
    Chen D; Vollmar M; Rossi MN; Phillips C; Kraehenbuehl R; Slade D; Mehrotra PV; von Delft F; Crosthwaite SK; Gileadi O; Denu JM; Ahel I
    J Biol Chem; 2011 Apr; 286(15):13261-71. PubMed ID: 21257746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural insights into the mechanism of Escherichia coli YmdB: A 2'-O-acetyl-ADP-ribose deacetylase.
    Zhang W; Wang C; Song Y; Shao C; Zhang X; Zang J
    J Struct Biol; 2015 Dec; 192(3):478-486. PubMed ID: 26481419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases.
    Landry J; Sutton A; Tafrov ST; Heller RC; Stebbins J; Pillus L; Sternglanz R
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5807-11. PubMed ID: 10811920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bypassing the catalytic activity of SIR2 for SIR protein spreading in Saccharomyces cerevisiae.
    Yang B; Kirchmaier AL
    Mol Biol Cell; 2006 Dec; 17(12):5287-97. PubMed ID: 17035629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Mechanism for SIRT1 Activators That Does Not Rely on the Chemical Moiety Immediately C-Terminal to the Acetyl-Lysine of the Substrate.
    Yu ND; Wang B; Li XZ; Han HZ; Liu D
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation.
    Schmidt MT; Smith BC; Jackson MD; Denu JM
    J Biol Chem; 2004 Sep; 279(38):40122-9. PubMed ID: 15269219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions.
    Tanny JC; Kirkpatrick DS; Gerber SA; Gygi SP; Moazed D
    Mol Cell Biol; 2004 Aug; 24(16):6931-46. PubMed ID: 15282295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histone H4 lysine 16 acetylation regulates cellular lifespan.
    Dang W; Steffen KK; Perry R; Dorsey JA; Johnson FB; Shilatifard A; Kaeberlein M; Kennedy BK; Berger SL
    Nature; 2009 Jun; 459(7248):802-7. PubMed ID: 19516333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae.
    Garcia SN; Pillus L
    Genetics; 2002 Oct; 162(2):721-36. PubMed ID: 12399383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.