These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 20176556)

  • 41. Regulation mechanism of microRNA in plant response to abiotic stress and breeding.
    Sun X; Lin L; Sui N
    Mol Biol Rep; 2019 Feb; 46(1):1447-1457. PubMed ID: 30465132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation.
    Jha UC; Nayyar H; Jha R; Khurshid M; Zhou M; Mantri N; Siddique KHM
    BMC Plant Biol; 2020 Oct; 20(1):466. PubMed ID: 33046001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Normalization for Relative Quantification of mRNA and microRNA in Soybean Exposed to Various Abiotic Stresses.
    Liu W; Deng Y; Zhou Y; Chen H; Dong Y; Wang N; Li X; Jameel A; Yang H; Zhang M; Chen K; Wang F; Li H
    PLoS One; 2016; 11(5):e0155606. PubMed ID: 27176476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods.
    Ku YS; Wong JW; Mui Z; Liu X; Hui JH; Chan TF; Lam HM
    Int J Mol Sci; 2015 Oct; 16(10):24532-54. PubMed ID: 26501263
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The strength of the miR398-Csd2-CCS1 regulon is subject to natural variation in Arabidopsis thaliana.
    Juszczak I; Baier M
    FEBS Lett; 2012 Sep; 586(19):3385-90. PubMed ID: 22841720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nutrient- and other stress-responsive microRNAs in plants: Role for thiol-based redox signaling.
    Panda SK; Sunkar R
    Plant Signal Behav; 2015; 10(4):e1010916. PubMed ID: 25912823
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress.
    Ding Y; Wang Y; Jiang Z; Wang F; Jiang Q; Sun J; Chen Z; Zhu C
    J Agric Food Chem; 2017 Jul; 65(29):5860-5867. PubMed ID: 28657742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression.
    Lu Y; Feng Z; Bian L; Xie H; Liang J
    Funct Plant Biol; 2010 Jan; 38(1):44-53. PubMed ID: 32480861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression Profile of Stress-responsive Arabidopsis thaliana miRNAs and their Target Genes in Response to Inoculation with Pectobacterium carotovorum subsp. carotovorum.
    Djami-Tchatchou AT; Ntushelo K
    Pak J Biol Sci; 2017; 20(3):147-153. PubMed ID: 29023006
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress.
    Pantaleo V; Vitali M; Boccacci P; Miozzi L; Cuozzo D; Chitarra W; Mannini F; Lovisolo C; Gambino G
    Sci Rep; 2016 Feb; 6():20167. PubMed ID: 26833264
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Keep calm and carry on: miRNA biogenesis under stress.
    Manavella PA; Yang SW; Palatnik J
    Plant J; 2019 Sep; 99(5):832-843. PubMed ID: 31025462
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana.
    Ren L; Tang G
    Plant Sci; 2012 May; 187():59-68. PubMed ID: 22404833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bypassing miRNA-mediated gene regulation under drought stress: alternative splicing affects CSD1 gene expression.
    Park SY; Grabau E
    Plant Mol Biol; 2017 Oct; 95(3):243-252. PubMed ID: 28776286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MicroRNA-directed regulation: to cleave or not to cleave.
    Mallory AC; Bouché N
    Trends Plant Sci; 2008 Jul; 13(7):359-67. PubMed ID: 18501664
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of microRNAs and other endogenous small RNAs in plant stress responses.
    Shukla LI; Chinnusamy V; Sunkar R
    Biochim Biophys Acta; 2008 Nov; 1779(11):743-8. PubMed ID: 18457682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant microRNAs and development.
    Jover-Gil S; Candela H; Ponce MR
    Int J Dev Biol; 2005; 49(5-6):733-44. PubMed ID: 16096978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Missing Pieces in the Puzzle of Plant MicroRNAs.
    Reis RS; Eamens AL; Waterhouse PM
    Trends Plant Sci; 2015 Nov; 20(11):721-728. PubMed ID: 26442682
    [TBL] [Abstract][Full Text] [Related]  

  • 58. miR398 and miR395 are involved in response to SO
    Li L; Yi H; Xue M; Yi M
    Ecotoxicology; 2017 Nov; 26(9):1181-1187. PubMed ID: 28819808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum).
    Burklew CE; Ashlock J; Winfrey WB; Zhang B
    PLoS One; 2012; 7(5):e34783. PubMed ID: 22606225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.