BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20176813)

  • 1. A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation.
    Henkels KM; Peng HJ; Frondorf K; Gomez-Cambronero J
    Mol Cell Biol; 2010 May; 30(9):2251-63. PubMed ID: 20176813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell invasion of highly metastatic MTLn3 cancer cells is dependent on phospholipase D2 (PLD2) and Janus kinase 3 (JAK3).
    Henkels KM; Farkaly T; Mahankali M; Segall JE; Gomez-Cambronero J
    J Mol Biol; 2011 May; 408(5):850-62. PubMed ID: 21414324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum deprivation confers the MDA-MB-231 breast cancer line with an EGFR/JAK3/PLD2 system that maximizes cancer cell invasion.
    Ye Q; Kantonen S; Gomez-Cambronero J
    J Mol Biol; 2013 Feb; 425(4):755-66. PubMed ID: 23238254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts.
    Knapek K; Frondorf K; Post J; Short S; Cox D; Gomez-Cambronero J
    Mol Cell Biol; 2010 Sep; 30(18):4492-506. PubMed ID: 20647543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new signaling pathway (JAK-Fes-phospholipase D) that is enhanced in highly proliferative breast cancer cells.
    Ye Q; Kantonen S; Henkels KM; Gomez-Cambronero J
    J Biol Chem; 2013 Apr; 288(14):9881-9891. PubMed ID: 23404507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GEF-to-phospholipase molecular switch caused by phosphatidic acid, Rac and JAK tyrosine kinase that explains leukocyte cell migration.
    Mahankali M; Henkels KM; Gomez-Cambronero J
    J Cell Sci; 2013 Mar; 126(Pt 6):1416-28. PubMed ID: 23378025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidic Acid Increases Epidermal Growth Factor Receptor Expression by Stabilizing mRNA Decay and by Inhibiting Lysosomal and Proteasomal Degradation of the Internalized Receptor.
    Hatton N; Lintz E; Mahankali M; Henkels KM; Gomez-Cambronero J
    Mol Cell Biol; 2015 Sep; 35(18):3131-44. PubMed ID: 26124282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The elucidation of novel SH2 binding sites on PLD2.
    Di Fulvio M; Lehman N; Lin X; Lopez I; Gomez-Cambronero J
    Oncogene; 2006 May; 25(21):3032-40. PubMed ID: 16407827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation.
    Henkels KM; Short S; Peng HJ; Di Fulvio M; Gomez-Cambronero J
    Biochem Biophys Res Commun; 2009 Nov; 389(2):224-8. PubMed ID: 19715678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New concepts in phospholipase D signaling in inflammation and cancer.
    Gomez-Cambronero J
    ScientificWorldJournal; 2010 Jul; 10():1356-69. PubMed ID: 20623096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of RBL-2H3 mast cells is dependent on tyrosine phosphorylation of phospholipase D2 by Fyn and Fgr.
    Choi WS; Hiragun T; Lee JH; Kim YM; Kim HP; Chahdi A; Her E; Han JW; Beaven MA
    Mol Cell Biol; 2004 Aug; 24(16):6980-92. PubMed ID: 15282299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF).
    Gomez-Cambronero J
    Cell Signal; 2011 Dec; 23(12):1885-95. PubMed ID: 21740967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The uncovering of a novel regulatory mechanism for PLD2: formation of a ternary complex with protein tyrosine phosphatase PTP1B and growth factor receptor-bound protein GRB2.
    Horn J; Lopez I; Miller MW; Gomez-Cambronero J
    Biochem Biophys Res Commun; 2005 Jun; 332(1):58-67. PubMed ID: 15896299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of enzymatic reaction and protein-protein interactions of PLD from a 3D structural model.
    Mahankali M; Alter G; Gomez-Cambronero J
    Cell Signal; 2015 Jan; 27(1):69-81. PubMed ID: 25308783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The direct interaction of phospholipase C-gamma 1 with phospholipase D2 is important for epidermal growth factor signaling.
    Jang IH; Lee S; Park JB; Kim JH; Lee CS; Hur EM; Kim IS; Kim KT; Yagisawa H; Suh PG; Ryu SH
    J Biol Chem; 2003 May; 278(20):18184-90. PubMed ID: 12646582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLD2 complexes with the EGF receptor and undergoes tyrosine phosphorylation at a single site upon agonist stimulation.
    Slaaby R; Jensen T; Hansen HS; Frohman MA; Seedorf K
    J Biol Chem; 1998 Dec; 273(50):33722-7. PubMed ID: 9837959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation of Y179 on phospholipase D2 (PLD2) upregulates DNA synthesis in a PI3K-and Akt-dependent manner.
    Di Fulvio M; Frondorf K; Gomez-Cambronero J
    Cell Signal; 2008 Jan; 20(1):176-85. PubMed ID: 18006275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase Cdelta-mediated phosphorylation of phospholipase D controls integrin-mediated cell spreading.
    Chae YC; Kim KL; Ha SH; Kim J; Suh PG; Ryu SH
    Mol Cell Biol; 2010 Nov; 30(21):5086-98. PubMed ID: 20733000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmodulation between phospholipase D and c-Src enhances cell proliferation.
    Ahn BH; Kim SY; Kim EH; Choi KS; Kwon TK; Lee YH; Chang JS; Kim MS; Jo YH; Min DS
    Mol Cell Biol; 2003 May; 23(9):3103-15. PubMed ID: 12697812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sites on phospholipase D2 phosphorylated by PKCalpha.
    Chen JS; Exton JH
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1322-6. PubMed ID: 15979581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.