BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20176966)

  • 1. Fluctuation enhanced electrochemical reaction rates at the nanoscale.
    García-Morales V; Krischer K
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4528-32. PubMed ID: 20176966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superstatistics in nanoscale electrochemical systems.
    García-Morales V; Krischer K
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19535-9. PubMed ID: 22106266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonergodicity in nanoscale electrodes.
    Krapf D
    Phys Chem Chem Phys; 2013 Jan; 15(2):459-65. PubMed ID: 23070026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification.
    Kang M; Mun C; Jung HS; Ansah IB; Kim E; Yang H; Payne GF; Kim DH; Park SG
    Nanoscale; 2020 Feb; 12(6):3668-3676. PubMed ID: 31793610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fenton-based electrochemical degradation of metolachlor in aqueous solution by means of BDD and Pt electrodes: influencing factors and reaction pathways.
    Thiam A; Salazar R
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2580-2591. PubMed ID: 30474812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of hydrogen peroxide consumption in an oxidation reaction in molecular solvent and ionic liquids by a hydrogen peroxide electrochemical sensor.
    Sordi D; Arduini F; Conte V; Moscone D; Palleschi G
    ChemSusChem; 2011 Jun; 4(6):792-6. PubMed ID: 21595045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic enhancement in nanoscale electrochemical systems caused by non-normal distributions of the electrode potential.
    García-Morales V; Krischer K
    J Chem Phys; 2011 Jun; 134(24):244512. PubMed ID: 21721648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical investigations of cytochrome P450.
    Shumyantseva VV; Bulko TV; Suprun EV; Chalenko YM; Vagin MY; Rudakov YO; Shatskaya MA; Archakov AI
    Biochim Biophys Acta; 2011 Jan; 1814(1):94-101. PubMed ID: 20650335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox State Control of Human Cytoglobin by Direct Electrochemical Method to Investigate Its Function in Molecular Basis.
    Mie Y; Takahashi K; Torii R; Jingkai S; Tanaka T; Sueyoshi K; Tsujino H; Yamashita T
    Chem Pharm Bull (Tokyo); 2020 Aug; 68(8):806-809. PubMed ID: 32461519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Use of Conducting Polymers for Enhanced Electrochemical Determination of Hydrogen Peroxide.
    Borràs-Brull M; Blondeau P; Riu J
    Crit Rev Anal Chem; 2021; 51(3):204-217. PubMed ID: 31992056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.
    Ping J; Wang Y; Fan K; Wu J; Ying Y
    Biosens Bioelectron; 2011 Oct; 28(1):204-9. PubMed ID: 21807494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale electrochemical kinetics & dynamics: the challenges and opportunities of single-entity measurements.
    Edwards MA; Robinson DA; Ren H; Cheyne CG; Tan CS; White HS
    Faraday Discuss; 2018 Oct; 210(0):9-28. PubMed ID: 30264833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Flow through Polyaniline Supported by Lamellar-Structured Graphene for Mass-Transfer-Enhanced Electrocatalytic Reduction of Hexavalent Chromium.
    Ji Q; Yu D; Zhang G; Lan H; Liu H; Qu J
    Environ Sci Technol; 2015 Nov; 49(22):13534-41. PubMed ID: 26506080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of surface roughed Pt nanowires and their application as electrochemical sensors for hydrogen peroxide detection.
    Gao F; Li Z; Ruan D; Gu Z
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6599-605. PubMed ID: 25924305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform.
    Lin M; Song P; Zhou G; Zuo X; Aldalbahi A; Lou X; Shi J; Fan C
    Nat Protoc; 2016 Jul; 11(7):1244-63. PubMed ID: 27310264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-addressable electrochemistry at semiconductor electrodes: redox imaging, mask-free lithography and spatially resolved chemical and biological sensing.
    Vogel YB; Gooding JJ; Ciampi S
    Chem Soc Rev; 2019 Jul; 48(14):3723-3739. PubMed ID: 31143897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical energy engineering: a new frontier of chemical engineering innovation.
    Gu S; Xu B; Yan Y
    Annu Rev Chem Biomol Eng; 2014; 5():429-54. PubMed ID: 24702299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced electro-reduction of NO to NH
    Adam Gopal R; Govindan M; Moon IS
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29517-29523. PubMed ID: 29500589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An on-chip chemiresistive polyaniline nanowire-based pH sensor with self-calibration capability.
    Song E; Choi JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4018-21. PubMed ID: 23366809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.
    Dos Santos AJ; Costa ECTA; da Silva DR; Garcia-Segura S; Martínez-Huitle CA
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):7002-7011. PubMed ID: 29273989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.