These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 20177401)

  • 1. Recent advances in renal phosphate handling.
    Farrow EG; White KE
    Nat Rev Nephrol; 2010 Apr; 6(4):207-17. PubMed ID: 20177401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteo-renal cross-talk and phosphate metabolism by the FGF23-Klotho system.
    Ohnishi M; Razzaque MS
    Contrib Nephrol; 2013; 180():1-13. PubMed ID: 23652546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Causes of Hypo- and Hyperphosphatemia in Humans.
    Koumakis E; Cormier C; Roux C; Briot K
    Calcif Tissue Int; 2021 Jan; 108(1):41-73. PubMed ID: 32285168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [FGF-23: just a phosphate metabolism regulator or something else?].
    Sánchez-González MC; Salanova L; Ruano P
    Reumatol Clin; 2011 Sep; 7 Suppl 2():S5-7. PubMed ID: 21924212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization.
    Liu S; Gupta A; Quarles LD
    Curr Opin Nephrol Hypertens; 2007 Jul; 16(4):329-35. PubMed ID: 17565275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fibroblast Growth Factor 23-Klotho: a new axis of phosphate balance control].
    Prié D; Ureña Torres P; Friedlander G
    Med Sci (Paris); 2009 May; 25(5):489-95. PubMed ID: 19480830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal Dnase1 expression is regulated by FGF23 but loss of Dnase1 does not alter renal phosphate handling.
    Egli-Spichtig D; Zhang MYH; Li A; Pastor Arroyo EM; Hernando N; Wagner CA; Chang W; Perwad F
    Sci Rep; 2021 Mar; 11(1):6175. PubMed ID: 33731726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Disorders of phosphate metabolism].
    Fukumoto S
    Rinsho Byori; 2010 Mar; 58(3):225-31. PubMed ID: 20408440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Practical Clinical Approach to Paediatric Phosphate Disorders.
    Imel EA; Carpenter TO
    Endocr Dev; 2015; 28():134-161. PubMed ID: 26138840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model.
    Nakatani T; Ohnishi M; Razzaque MS
    FASEB J; 2009 Nov; 23(11):3702-11. PubMed ID: 19584304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Endocrine control of serum phosphate: from the discoveries of phosphatonins to novel therapies].
    Linglart A; Chaussain C
    Ann Endocrinol (Paris); 2016 Oct; 77 Suppl 1():S36-S42. PubMed ID: 28645356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease.
    Stubbs J; Liu S; Quarles LD
    Semin Dial; 2007; 20(4):302-8. PubMed ID: 17635819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Renal hypophosphatemia:pathophysiology and treatment].
    Sekine T
    Clin Calcium; 2016 Feb; 26(2):284-94. PubMed ID: 26813509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal phosphate handling in human--what can we learn from hereditary hypophosphataemias?
    Amatschek S; Haller M; Oberbauer R
    Eur J Clin Invest; 2010 Jun; 40(6):552-60. PubMed ID: 20412291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibroblast growth factor 23 and phosphate homeostasis.
    Balani S; Perwad F
    Curr Opin Nephrol Hypertens; 2019 Sep; 28(5):465-473. PubMed ID: 31335449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of the FGF23-Klotho axis.
    Kuro-o M
    Pediatr Nephrol; 2010 Apr; 25(4):583-90. PubMed ID: 19626341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin COOH-terminal hydrolase L1 deletion is associated with urinary α-klotho deficiency and perturbed phosphate homeostasis.
    Boisvert NC; Holterman CE; Gutsol A; Coulombe J; Pan W; Alexander RT; Gray DA; Kennedy CR
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F353-F363. PubMed ID: 29667913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and phosphate homeostasis: concerted interplay of new regulators.
    Civitelli R; Ziambaras K
    J Endocrinol Invest; 2011 Jul; 34(7 Suppl):3-7. PubMed ID: 21985972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fibroblast growth factor-23 (FGF-23). Part I. Significance in phosphate homeostasis and bone metabolism].
    Fedak D; Bigaj K; Sułowicz W
    Przegl Lek; 2011; 68(4):231-8. PubMed ID: 21853680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.