These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2017771)

  • 1. Decreased glutathione S-transferase activity in mice livers by acute treatment with lead, independent of alteration in glutathione content.
    Nakagawa K
    Toxicol Lett; 1991 Apr; 56(1-2):13-7. PubMed ID: 2017771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification by phenobarbital of decreased glutathione content and glutathione S-transferase activity in livers of lead-treated mice.
    Nakagawa K
    Toxicol Lett; 1992 Aug; 62(1):63-71. PubMed ID: 1509508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic glutathione metabolism in mice acutely treated with lead acetate.
    Nakagawa K
    Jpn J Pharmacol; 1989 Oct; 51(2):173-9. PubMed ID: 2574245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionine and cysteine affect glutathione level, glutathione-related enzyme activities and the expression of glutathione S-transferase isozymes in rat hepatocytes.
    Wang ST; Chen HW; Sheen LY; Lii CK
    J Nutr; 1997 Nov; 127(11):2135-41. PubMed ID: 9372907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diethyl maleate, an in vivo chemical depletor of glutathione, affects the response of male and female rats to arsenic deprivation.
    Uthus EO
    Biol Trace Elem Res; 1994 Dec; 46(3):247-59. PubMed ID: 7702979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mouse liver content of carbonic anhydrase III and glutathione S-tranferases A3 and P1 depend on dietary supply of methionine and cysteine.
    Ronchi VP; Conde RD; Guillemot JC; Sanllorenti PM
    Int J Biochem Cell Biol; 2004 Oct; 36(10):1993-2004. PubMed ID: 15203113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of triethyl lead administration on the expression of glutathione S-transferase isoenzymes and quinone reductase in rat kidney and liver.
    Daggett DA; Nuwaysir EF; Nelson SA; Wright LS; Kornguth SE; Siegel FL
    Toxicology; 1997 Feb; 117(1):61-71. PubMed ID: 9020200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of glutathione S-transferase isozymes and gamma-glutamylcysteine synthetase as negative acute-phase proteins in rat liver.
    Buetler TM
    Hepatology; 1998 Dec; 28(6):1551-60. PubMed ID: 9828219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lead administration on developing rat kidney. I. Glutathione S-transferase isoenzymes.
    Moser R; Oberley TD; Daggett DA; Friedman AL; Johnson JA; Siegel FL
    Toxicol Appl Pharmacol; 1995 Mar; 131(1):85-93. PubMed ID: 7878682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of glutathione-S-transferase in rat liver and kidneys after administration of lead or cadmium.
    Planas-Bohne F; Elizalde M
    Arch Toxicol; 1992; 66(5):365-7. PubMed ID: 1610299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-Nitrosodimethylamine changes the expression of glutathione S-transferase in the liver of male mice: The role of antioxidants.
    Sheweita SA; Mousa N; Al-Masry HM
    J Biochem Mol Toxicol; 2008; 22(6):389-95. PubMed ID: 19111000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of allylisopropylacetamide on glutathione metabolism in the rat liver. The possible role of glutathione in the induction of 5-aminolaevulinate synthase.
    Maines MD
    Biochem J; 1981 Apr; 196(1):285-92. PubMed ID: 6118139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in hepatic cytosolic glutathione S-transferase activity and expression of its class-P during prenatal and postnatal period in rats treated with aflatoxin B1.
    Fatemi F; Allameh A; Dadkhah A; Forouzandeh M; Kazemnejad S; Sharifi R
    Arch Toxicol; 2006 Sep; 80(9):572-9. PubMed ID: 16501953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon tetrachloride-induced changes in the activity of phase II drug-metabolizing enzyme in the liver of male rats: role of antioxidants.
    Sheweita SA; Abd El-Gabar M; Bastawy M
    Toxicology; 2001 Aug; 165(2-3):217-24. PubMed ID: 11522380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of modulation of hepatic glutathione on biotransformation and covalent binding of aflatoxin B1 to DNA in the mouse.
    Monroe DH; Eaton DL
    Toxicol Appl Pharmacol; 1988 Jun; 94(1):118-27. PubMed ID: 3131927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of lead on rat kidney and liver: GST expression and oxidative stress.
    Daggett DA; Oberley TD; Nelson SA; Wright LS; Kornguth SE; Siegel FL
    Toxicology; 1998 Jul; 128(3):191-206. PubMed ID: 9750042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of dietary methionine, lead and lindane in rats.
    Rowe VA; Hathcock JN; Serfass RE; Shriver CN
    Drug Nutr Interact; 1986; 4(4):349-54. PubMed ID: 2431855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of bucillamine on glutathione and glutathione-related enzymes in the mouse.
    Yeung JH
    Biochem Pharmacol; 1991 Jul; 42(4):847-52. PubMed ID: 1867640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of selenium-containing compounds on hepatic chemoprotective enzymes in mice.
    El-Sayed WM; Aboul-Fadl T; Lamb JG; Roberts JC; Franklin MR
    Toxicology; 2006 Mar; 220(2-3):179-88. PubMed ID: 16451816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible regulation mechanism of microsomal glutathione S-transferase activity in rat liver.
    Masukawa T; Iwata H
    Biochem Pharmacol; 1986 Feb; 35(3):435-8. PubMed ID: 3947380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.