BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20178097)

  • 1. In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffold.
    Roshan-Ghias A; Terrier A; Bourban PE; Pioletti DP
    Eur Cell Mater; 2010 Feb; 19():41-9. PubMed ID: 20178097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold.
    Cao L; Duan PG; Wang HR; Li XL; Yuan FL; Fan ZY; Li SM; Dong J
    Int J Nanomedicine; 2012; 7():5881-8. PubMed ID: 23226019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model.
    Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB
    Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering.
    Yanoso-Scholl L; Jacobson JA; Bradica G; Lerner AL; O'Keefe RJ; Schwarz EM; Zuscik MJ; Awad HA
    J Biomed Mater Res A; 2010 Dec; 95(3):717-26. PubMed ID: 20725979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects.
    Oest ME; Dupont KM; Kong HJ; Mooney DJ; Guldberg RE
    J Orthop Res; 2007 Jul; 25(7):941-50. PubMed ID: 17415756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model.
    Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO
    Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a tunnel-structured β-tricalcium phosphate graft material on periodontal regeneration: a pilot study in a canine one-wall intrabony defect model.
    Matsuura T; Akizuki T; Hoshi S; Ikawa T; Kinoshita A; Sunaga M; Oda S; Kuboki Y; Izumi Y
    J Periodontal Res; 2015 Jun; 50(3):347-55. PubMed ID: 25040655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells.
    Alexander D; Hoffmann J; Munz A; Friedrich B; Geis-Gerstorfer J; Reinert S
    J Mater Sci Mater Med; 2008 Mar; 19(3):965-74. PubMed ID: 18158613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
    Ke D; Dernell W; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1549-59. PubMed ID: 25504889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.
    Roshan-Ghias A; Lambers FM; Gholam-Rezaee M; Müller R; Pioletti DP
    Bone; 2011 Dec; 49(6):1357-64. PubMed ID: 21958844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing of Bone-Mimetic Scaffold Composed of Gelatin/β-Tri-Calcium Phosphate for Bone Tissue Engineering.
    Jeong JE; Park SY; Shin JY; Seok JM; Byun JH; Oh SH; Kim WD; Lee JH; Park WH; Park SA
    Macromol Biosci; 2020 Dec; 20(12):e2000256. PubMed ID: 33164317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering.
    Jung Y; Kim SS; Kim YH; Kim SH; Kim BS; Kim S; Choi CY; Kim SH
    Biomaterials; 2005 Nov; 26(32):6314-22. PubMed ID: 15913759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.