These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 20178122)
1. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Trexler-Schmidt M; Sargis S; Chiu J; Sze-Khoo S; Mun M; Kao YH; Laird MW Biotechnol Bioeng; 2010 Jun; 106(3):452-61. PubMed ID: 20178122 [TBL] [Abstract][Full Text] [Related]
2. Air sparging for prevention of antibody disulfide bond reduction in harvested CHO cell culture fluid. Mun M; Khoo S; Do Minh A; Dvornicky J; Trexler-Schmidt M; Kao YH; Laird MW Biotechnol Bioeng; 2015 Apr; 112(4):734-42. PubMed ID: 25384896 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of antibody reduction in cell culture production processes. Kao YH; Hewitt DP; Trexler-Schmidt M; Laird MW Biotechnol Bioeng; 2010 Nov; 107(4):622-32. PubMed ID: 20589844 [TBL] [Abstract][Full Text] [Related]
4. Aggregates in monoclonal antibody manufacturing processes. Vázquez-Rey M; Lang DA Biotechnol Bioeng; 2011 Jul; 108(7):1494-508. PubMed ID: 21480193 [TBL] [Abstract][Full Text] [Related]
5. Using hydrogen peroxide to prevent antibody disulfide bond reduction during manufacturing process. Du C; Huang Y; Borwankar A; Tan Z; Cura A; Yee JC; Singh N; Ludwig R; Borys M; Ghose S; Mussa N; Li ZJ MAbs; 2018 Apr; 10(3):500-510. PubMed ID: 29336721 [TBL] [Abstract][Full Text] [Related]
6. Thioredoxin 1 is responsible for antibody disulfide reduction in CHO cell culture. Koterba KL; Borgschulte T; Laird MW J Biotechnol; 2012 Jan; 157(1):261-7. PubMed ID: 22138638 [TBL] [Abstract][Full Text] [Related]
7. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability. Chung WK; Russell B; Yang Y; Handlogten M; Hudak S; Cao M; Wang J; Robbins D; Ahuja S; Zhu M Biotechnol Bioeng; 2017 Jun; 114(6):1264-1274. PubMed ID: 28186329 [TBL] [Abstract][Full Text] [Related]
8. Controlling trisulfide modification in recombinant monoclonal antibody produced in fed-batch cell culture. Kshirsagar R; McElearney K; Gilbert A; Sinacore M; Ryll T Biotechnol Bioeng; 2012 Oct; 109(10):2523-32. PubMed ID: 22473825 [TBL] [Abstract][Full Text] [Related]
9. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562 [TBL] [Abstract][Full Text] [Related]
10. Development toward rapid and efficient screening for high performance hydrolysate lots in a recombinant monoclonal antibody manufacturing process. Luo Y; Pierce KM Biotechnol Prog; 2012 Jul; 28(4):1061-8. PubMed ID: 22641483 [TBL] [Abstract][Full Text] [Related]
11. Impact of depth filtration on disulfide bond reduction during downstream processing of monoclonal antibodies from CHO cell cultures. O'Mara B; Gao ZH; Kuruganti M; Mallett R; Nayar G; Smith L; Meyer JD; Therriault J; Miller C; Cisney J; Fann J Biotechnol Bioeng; 2019 Jul; 116(7):1669-1683. PubMed ID: 30883673 [TBL] [Abstract][Full Text] [Related]
12. Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Chiang GG; Sisk WP Biotechnol Bioeng; 2005 Sep; 91(7):779-92. PubMed ID: 15986489 [TBL] [Abstract][Full Text] [Related]
13. Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing. Handlogten MW; Zhu M; Ahuja S Biotechnol Bioeng; 2017 Jul; 114(7):1469-1477. PubMed ID: 28262915 [TBL] [Abstract][Full Text] [Related]
14. Innovative and economic potential of mammalian cell culture. Werner RG Arzneimittelforschung; 1998 Apr; 48(4):423-6. PubMed ID: 9608886 [TBL] [Abstract][Full Text] [Related]
15. Impact of cell culture process changes on endogenous retrovirus expression. Brorson K; De Wit C; Hamilton E; Mustafa M; Swann PG; Kiss R; Taticek R; Polastri G; Stein KE; Xu Y Biotechnol Bioeng; 2002 Nov; 80(3):257-67. PubMed ID: 12226857 [TBL] [Abstract][Full Text] [Related]
16. Defining process design space for monoclonal antibody cell culture. Abu-Absi SF; Yang L; Thompson P; Jiang C; Kandula S; Schilling B; Shukla AA Biotechnol Bioeng; 2010 Aug; 106(6):894-905. PubMed ID: 20589669 [TBL] [Abstract][Full Text] [Related]
17. Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Xing Z; Kenty BM; Li ZJ; Lee SS Biotechnol Bioeng; 2009 Jul; 103(4):733-46. PubMed ID: 19280669 [TBL] [Abstract][Full Text] [Related]
18. Guidelines to cell engineering for monoclonal antibody production. Rita Costa A; Elisa Rodrigues M; Henriques M; Azeredo J; Oliveira R Eur J Pharm Biopharm; 2010 Feb; 74(2):127-38. PubMed ID: 19853660 [TBL] [Abstract][Full Text] [Related]
19. Comparability testing of a humanized monoclonal antibody (Synagis) to support cell line stability, process validation, and scale-up for manufacturing. Schenerman MA; Hope JN; Kletke C; Singh JK; Kimura R; Tsao EI; Folena-Wasserman G Biologicals; 1999 Sep; 27(3):203-15. PubMed ID: 10652176 [TBL] [Abstract][Full Text] [Related]
20. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]