These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Clar sextet analysis of triangular, rectangular, and honeycomb graphene antidot lattices. Petersen R; Pedersen TG; Jauho AP ACS Nano; 2011 Jan; 5(1):523-9. PubMed ID: 21158482 [TBL] [Abstract][Full Text] [Related]
48. Edge-states in graphene nanoribbons: a combined spectroscopy and transport study. Baringhaus J; Edler F; Tegenkamp C J Phys Condens Matter; 2013 Oct; 25(39):392001. PubMed ID: 23945317 [TBL] [Abstract][Full Text] [Related]
49. Quasiparticle energies and band gaps in graphene nanoribbons. Yang L; Park CH; Son YW; Cohen ML; Louie SG Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426 [TBL] [Abstract][Full Text] [Related]
50. Tuning the electronic structure of graphene by an organic molecule. Lu YH; Chen W; Feng YP; He PM J Phys Chem B; 2009 Jan; 113(1):2-5. PubMed ID: 19072320 [TBL] [Abstract][Full Text] [Related]
51. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons. Liu ZM; Zhu Y; Yang ZQ J Chem Phys; 2011 Feb; 134(7):074708. PubMed ID: 21341870 [TBL] [Abstract][Full Text] [Related]
52. Organic bonding to silicon via a carbonyl group: new insights from atomic-scale images. Schofield SR; Saraireh SA; Smith PV; Radny MW; King BV J Am Chem Soc; 2007 Sep; 129(37):11402-7. PubMed ID: 17718488 [TBL] [Abstract][Full Text] [Related]
53. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons. Li YY; Chen MX; Weinert M; Li L Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261 [TBL] [Abstract][Full Text] [Related]
54. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Stolyarova E; Rim KT; Ryu S; Maultzsch J; Kim P; Brus LE; Heinz TF; Hybertsen MS; Flynn GW Proc Natl Acad Sci U S A; 2007 May; 104(22):9209-12. PubMed ID: 17517635 [TBL] [Abstract][Full Text] [Related]
55. First-principles investigations on the functionalization of chiral and non-chiral carbon nanotubes by Diels-Alder cycloaddition reactions. Mercuri F; Sgamellotti A Phys Chem Chem Phys; 2009 Jan; 11(3):563-7. PubMed ID: 19283274 [TBL] [Abstract][Full Text] [Related]
56. Electronic effects induced by single hydrogen atoms on the Ge(001) surface. Radny MW; Shah GA; Smith PV; Schofield SR; Curson NJ J Chem Phys; 2008 Jun; 128(24):244707. PubMed ID: 18601365 [TBL] [Abstract][Full Text] [Related]
57. Electronic properties of self-assembled trimesic acid monolayer on graphene. Shayeganfar F; Rochefort A Langmuir; 2014 Aug; 30(32):9707-16. PubMed ID: 25072917 [TBL] [Abstract][Full Text] [Related]
58. Towards graphite: magnetic properties of large polybenzenoid hydrocarbons. Moran D; Stahl F; Bettinger HF; Schaefer HF; Schleyer P J Am Chem Soc; 2003 Jun; 125(22):6746-52. PubMed ID: 12769585 [TBL] [Abstract][Full Text] [Related]
59. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate. Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647 [TBL] [Abstract][Full Text] [Related]
60. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations. Lesnard H; Bocquet ML; Lorente N J Am Chem Soc; 2007 Apr; 129(14):4298-305. PubMed ID: 17362003 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]