BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 20178380)

  • 1. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification.
    You SJ; Ren NQ; Zhao QL; Kiely PD; Wang JY; Yang FL; Fu L; Peng L
    Biosens Bioelectron; 2009 Aug; 24(12):3698-701. PubMed ID: 19502045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell.
    He Z; Huang Y; Manohar AK; Mansfeld F
    Bioelectrochemistry; 2008 Nov; 74(1):78-82. PubMed ID: 18774345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating microbial fuel cell bioanode performance under different cathode conditions.
    Borole AP; Hamilton CY; Aaron DS; Tsouris C
    Biotechnol Prog; 2009; 25(6):1630-6. PubMed ID: 19731337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of pH buffer requirement in bioelectrochemical systems.
    Sleutels TH; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Nov; 44(21):8259-63. PubMed ID: 20942476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.
    Ahn Y; Logan BE
    Bioresour Technol; 2013 Mar; 132():436-9. PubMed ID: 23433978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigation of the effect of catholyte contamination in microbial fuel cells using a wicking air cathode.
    Sund CJ; Wong MS; Sumner JJ
    Biosens Bioelectron; 2009 Jun; 24(10):3144-7. PubMed ID: 19359159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors.
    Tartakovsky B; Guiot SR
    Biotechnol Prog; 2006; 22(1):241-6. PubMed ID: 16454516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of OH(-) transport from cathodes in microbial fuel cells.
    Popat SC; Ki D; Rittmann BE; Torres CI
    ChemSusChem; 2012 Jun; 5(6):1071-9. PubMed ID: 22615062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes.
    Biffinger JC; Pietron J; Ray R; Little B; Ringeisen BR
    Biosens Bioelectron; 2007 Mar; 22(8):1672-9. PubMed ID: 16939710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH.
    Behera M; Ghangrekar MM
    Bioresour Technol; 2009 Nov; 100(21):5114-21. PubMed ID: 19539466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells.
    Freguia S; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Mar; 42(6-7):1387-96. PubMed ID: 17996270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Litre-scale microbial fuel cells operated in a complete loop.
    Clauwaert P; Mulenga S; Aelterman P; Verstraete W
    Appl Microbiol Biotechnol; 2009 May; 83(2):241-7. PubMed ID: 19183981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells.
    You S; Zhao Q; Zhang J; Liu H; Jiang J; Zhao S
    Biosens Bioelectron; 2008 Feb; 23(7):1157-60. PubMed ID: 18068969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte.
    Venkata Mohan S; Saravanan R; Raghavulu SV; Mohanakrishna G; Sarma PN
    Bioresour Technol; 2008 Feb; 99(3):596-603. PubMed ID: 17321135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.
    Tandukar M; Huber SJ; Onodera T; Pavlostathis SG
    Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems.
    Harnisch F; Schröder U
    Chem Soc Rev; 2010 Nov; 39(11):4433-48. PubMed ID: 20830322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells.
    Cheng S; Logan BE
    Bioresour Technol; 2011 Mar; 102(6):4468-73. PubMed ID: 21273062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment.
    Ren Y; Chen J; Li X; Yang N; Wang X
    Bioelectrochemistry; 2018 Apr; 120():145-149. PubMed ID: 29268164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.