These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 20178562)
1. Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Arantes V; Saddler JN Biotechnol Biofuels; 2010 Feb; 3():4. PubMed ID: 20178562 [TBL] [Abstract][Full Text] [Related]
2. Rapid saccharification for production of cellulosic biofuels. Lee DS; Wi SG; Lee SJ; Lee YG; Kim YS; Bae HJ Bioresour Technol; 2014 Apr; 158():239-47. PubMed ID: 24607460 [TBL] [Abstract][Full Text] [Related]
3. Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Gourlay K; Hu J; Arantes V; Andberg M; Saloheimo M; Penttilä M; Saddler J Bioresour Technol; 2013 Aug; 142():498-503. PubMed ID: 23759433 [TBL] [Abstract][Full Text] [Related]
4. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Sathitsuksanoh N; Zhu Z; Ho TJ; Bai MD; Zhang YH Bioresour Technol; 2010 Jul; 101(13):4926-9. PubMed ID: 19854047 [TBL] [Abstract][Full Text] [Related]
5. The use of carbohydrate binding modules (CBMs) to monitor changes in fragmentation and cellulose fiber surface morphology during cellulase- and Swollenin-induced deconstruction of lignocellulosic substrates. Gourlay K; Hu J; Arantes V; Penttilä M; Saddler JN J Biol Chem; 2015 Jan; 290(5):2938-45. PubMed ID: 25527502 [TBL] [Abstract][Full Text] [Related]
6. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Zhao H; Baker GA; Cowins JV Biotechnol Prog; 2010; 26(1):127-33. PubMed ID: 19918908 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Mais U; Esteghlalian AR; Saddler JN; Mansfield SD Appl Biochem Biotechnol; 2002; 98-100():815-32. PubMed ID: 12018304 [TBL] [Abstract][Full Text] [Related]
8. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Arantes V; Saddler JN Biotechnol Biofuels; 2011 Feb; 4():3. PubMed ID: 21310050 [TBL] [Abstract][Full Text] [Related]
9. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323 [TBL] [Abstract][Full Text] [Related]
10. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Tian D; Chandra RP; Lee JS; Lu C; Saddler JN Biotechnol Biofuels; 2017; 10():157. PubMed ID: 28649276 [TBL] [Abstract][Full Text] [Related]
11. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Gourlay K; Arantes V; Saddler JN Biotechnol Biofuels; 2012 Jul; 5(1):51. PubMed ID: 22828270 [TBL] [Abstract][Full Text] [Related]
12. Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Wang W; Kang L; Wei H; Arora R; Lee YY Appl Biochem Biotechnol; 2011 Aug; 164(7):1139-49. PubMed ID: 21340535 [TBL] [Abstract][Full Text] [Related]
13. Multiple effects of swelling by sodium bicarbonate after delignification on enzymatic saccharification of rice straw. Kahar P; Taku K; Tanaka S J Biosci Bioeng; 2013 Dec; 116(6):725-33. PubMed ID: 23830033 [TBL] [Abstract][Full Text] [Related]
14. The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. Hu J; Gourlay K; Arantes V; Van Dyk JS; Pribowo A; Saddler JN ChemSusChem; 2015 Mar; 8(5):901-7. PubMed ID: 25607348 [TBL] [Abstract][Full Text] [Related]
15. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Jäger G; Girfoglio M; Dollo F; Rinaldi R; Bongard H; Commandeur U; Fischer R; Spiess AC; Büchs J Biotechnol Biofuels; 2011 Sep; 4(1):33. PubMed ID: 21943248 [TBL] [Abstract][Full Text] [Related]
16. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122 [TBL] [Abstract][Full Text] [Related]
17. The promotional effect of water-soluble extractives on the enzymatic cellulose hydrolysis of pretreated wheat straw. Smit AT; Huijgen WJJ Bioresour Technol; 2017 Nov; 243():994-999. PubMed ID: 28753744 [TBL] [Abstract][Full Text] [Related]
18. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods. Du J; Liang J; Gao X; Liu G; Qu Y Bioresour Technol; 2020 Jan; 295():122272. PubMed ID: 31669875 [TBL] [Abstract][Full Text] [Related]
19. Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling. Rohrbach JC; Luterbacher JS Biotechnol Biofuels; 2021 Apr; 14(1):103. PubMed ID: 33902675 [TBL] [Abstract][Full Text] [Related]
20. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading. Qiu J; Ma L; Shen F; Yang G; Zhang Y; Deng S; Zhang J; Zeng Y; Hu Y Bioresour Technol; 2017 Aug; 238():174-181. PubMed ID: 28433905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]