BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20178894)

  • 1. Low-cost capacitor voltage inverter for outstanding performance in piezoelectric energy harvesting.
    Lallart M; Garbuio L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):281-91. PubMed ID: 20178894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.
    Lallart M; Garbuio L; Petit L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2119-30. PubMed ID: 18986861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Self-Powered Hybrid SSHI Circuit with a Wide Operation Range for Piezoelectric Energy Harvesting.
    Wu L; Zhu P; Xie M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.
    Hu Y; Xue H; Hu T; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.
    Badel A; Benayad A; Lefeuvre E; Lebrun L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):673-84. PubMed ID: 16615571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoelectric diaphragm for vibration energy harvesting.
    Minazara E; Vasic D; Costa F; Poulin G
    Ultrasonics; 2006 Dec; 44 Suppl 1():e699-703. PubMed ID: 16814837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.
    Hu J; Jong J; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):386-94. PubMed ID: 20178904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices.
    Lallart M; Guyomar D; Richard C; Petit L
    J Acoust Soc Am; 2010 Nov; 128(5):2739-48. PubMed ID: 21110569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Self-Powered DSSH Circuit with MOSFET Threshold Voltage Management for Piezoelectric Energy Harvesting.
    Wu L; Wang X; Xie M
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyroelectric energy conversion: optimization principles.
    Sebald G; Lefeuvre E; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):538-51. PubMed ID: 18407845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.
    Luo C; Hofmann HF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1294-301. PubMed ID: 21768014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit.
    Hu H; Xue H; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1177-87. PubMed ID: 17571816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching loss reduction in nonlinear piezoelectric conversion under pulsed loading.
    Guyomar D; Lallart M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):494-502. PubMed ID: 21429841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall.
    Hu H; Hu Y; Chen C; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2312-9. PubMed ID: 18986879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Tiwari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Four Electrical Interfacing Circuits in Frequency Up-Conversion Piezoelectric Energy Harvesting.
    Lu H; Chen K; Tang H; Liu W
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Njuguna J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1309-18. PubMed ID: 19574142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-isolated high step-up DC/DC power converter with coupled-inductor.
    Liu VT; Tseng KC; Wu YH
    Sci Prog; 2021 Sep; 104(3_suppl):368504211027087. PubMed ID: 34263681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.