These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20178911)

  • 1. Reducing anchor loss in micromechanical extensional mode resonators.
    Taş V; Olcum S; Aksoy MD; Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):448-54. PubMed ID: 20178911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1.52-GHz micromechanical extensional wine-glass mode ring resonators.
    Xie Y; Li SS; Lin YW; Ren Z; Nguyen CT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):890-907. PubMed ID: 18467235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoelectric aluminum nitride resonator for oscillator.
    Mareschal O; Loiseau S; Fougerat A; Valbin L; Lissorgues G; Saez S; Dolabdjian C; Bouregba R; Poullain G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):513-7. PubMed ID: 20211764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PZT transduction of high-overtone contour-mode resonators.
    Chandrahalim H; Bhave SA; Polcawich RG; Pulskamp JS; Kaul R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):2035-41. PubMed ID: 20875993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A GHz Silicon-Based Width Extensional Mode MEMS Resonator with
    Liu W; Lu Y; Chen Z; Jia Q; Zhao J; Niu B; Wang W; Hao Y; Zhu Y; Yang J; Yang F
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of acoustic substrate losses in 1850-MHz thin film BAW resonators.
    Pensala T; Thalhammer R; Dekker J; Kaitila J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2544-52. PubMed ID: 19942540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element modelling of nanostructured piezoelectric resonators (NAPIERs).
    Southin JE; Whatmore RW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):654-62. PubMed ID: 15244278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A negative-capacitance equivalent circuit model for parallel-plate capacitive-gap-transduced micromechanical resonators.
    Akgul M; Wu L; Ren Z; Nguyen CT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):849-69. PubMed ID: 24801124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical and numerical study of acoustic mismatch effects on internal dielectrically transduced MEMS resonators.
    Hwang E; Bhave S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1664-72. PubMed ID: 20639160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatically tunable piezoelectric-on-silicon micromechanical resonator for real-time clock.
    Serrano D; Tabrizian R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):358-65. PubMed ID: 22481768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel matching network employing surface acoustic wave devices for W-CDMA power amplifiers.
    Li H; He S; Hashimoto KY; Omori T; Yamaguchi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e905-9. PubMed ID: 16797655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration Sensitivity in Bulk-Extensional Mode, Silicon-Based MEMS Oscillators.
    Khazaeili B; Gonzales J; Abdolvand R
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Q-factor distributed bragg reflector resonators with reflectors of arbitrary thickness.
    Le Floch JM; Tobar ME; Cros D; Krupka J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2689-95. PubMed ID: 18276575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the effects of surface chemistry on Q: mechanical energy dissipation in alkyl-terminated (C1-C18) micromechanical silicon resonators.
    Henry JA; Wang Y; Sengupta D; Hines MA
    J Phys Chem B; 2007 Jan; 111(1):88-94. PubMed ID: 17201432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon nanocrystals on bottle resonators: mode structure, loss mechanisms and emission dynamics.
    Bianucci P; Wang X; Veinot JG; Meldrum A
    Opt Express; 2010 Apr; 18(8):8466-81. PubMed ID: 20588693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adiabatic microring resonators.
    Watts MR
    Opt Lett; 2010 Oct; 35(19):3231-3. PubMed ID: 20890343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electromagnetic radiation on the Q of quartz resonators.
    Yong YK; Patel M; Vig J; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):353-60. PubMed ID: 19251522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.