These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20178916)

  • 21. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase velocity analysis of acoustic propagation in trabecular bone.
    Villarreal A; Medina L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1332-5. PubMed ID: 21095931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Singular value decomposition-based wave extraction in axial transmission: application to cortical bone ultrasonic characterization.
    Sasso M; Haïat G; Talmant M; Laugier P; Naili S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1328-32. PubMed ID: 18599420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of bone tissue density and elasticity on ultrasound propagation: an in vitro study.
    De Terlizzi F; Battista S; Cavani F; Canè V; Cadossi R
    J Bone Miner Res; 2000 Dec; 15(12):2458-66. PubMed ID: 11127210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones.
    Xu K; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2480-90. PubMed ID: 21041135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasound and the biomechanical competence of bone.
    Nicholson PF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1539-45. PubMed ID: 18986944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples.
    Foiret J; Minonzio JG; Chappard C; Talmant M; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1478-88. PubMed ID: 25167148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a new ultrasonic technique for bone and biomaterials in vitro characterization.
    Lefebvre F; Deblock Y; Campistron P; Ahite D; Fabre JJ
    J Biomed Mater Res; 2002; 63(4):441-6. PubMed ID: 12115753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasonic assessment of human and bovine trabecular bone: a comparison study.
    Alves JM; Xu W; Lin D; Siffert RS; Ryaby JT; Kaufman JJ
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):249-58. PubMed ID: 8682537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasonic guided waves in bone.
    Moilanen P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1277-86. PubMed ID: 18599415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone.
    Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M
    J Biomech; 2008; 41(2):347-55. PubMed ID: 18028934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The acoustic properties of normal and imbedded bovine bone as measured by acoustic microscopy.
    Zimmerman MC; Prabhakar A; Chokshi BV; Budhwani N; Berndt H
    J Biomed Mater Res; 1994 Aug; 28(8):931-8. PubMed ID: 7983091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements.
    Raum K; Leguerney I; Chandelier F; Bossy E; Talmant M; Saïed A; Peyrin F; Laugier P
    Ultrasound Med Biol; 2005 Sep; 31(9):1225-35. PubMed ID: 16176789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring the wavenumber of guided modes in waveguides with linearly varying thickness.
    Moreau L; Minonzio JG; Talmant M; Laugier P
    J Acoust Soc Am; 2014 May; 135(5):2614-24. PubMed ID: 24815245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the axial transmission technique for the assessment of skeletal status.
    Camus E; Talmant M; Berger G; Laugier P
    J Acoust Soc Am; 2000 Dec; 108(6):3058-65. PubMed ID: 11144598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic measurement of bone thickness for spinal surgery.
    Yamada M; Moriya H; Iino T; Kasai Y; Sudo A; Uchida A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2077-88. PubMed ID: 23007783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: model and experiments.
    Desceliers C; Soize C; Grimal Q; Talmant M; Naili S
    J Acoust Soc Am; 2009 Apr; 125(4):2027-34. PubMed ID: 19354378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasonic characterization of human trabecular bone microstructure.
    Hakulinen MA; Day JS; Töyräs J; Weinans H; Jurvelin JS
    Phys Med Biol; 2006 Mar; 51(6):1633-48. PubMed ID: 16510968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.